論文の概要: Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2505.18442v1
- Date: Sat, 24 May 2025 00:45:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.425428
- Title: Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
- Title(参考訳): アダプティブ・モデル・フュージョン」の「Breaking Silos」が時系列予測を改善
- Authors: Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong,
- Abstract要約: 時系列予測は多くの現実世界のアプリケーションにおいて重要な役割を果たす。
1つのモデルは、異なるテストサンプルで一貫して他よりも優れていますが、(ii) それぞれのモデルは特定のケースで優れています。
異種モデルのサンプルレベル適応融合による時系列予測のためのフレームワークであるTimeFuseを紹介する。
- 参考スコア(独自算出の注目度): 64.45587649141842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-series forecasting plays a critical role in many real-world applications. Although increasingly powerful models have been developed and achieved superior results on benchmark datasets, through a fine-grained sample-level inspection, we find that (i) no single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases. These findings prompt us to explore how to adaptively leverage the distinct strengths of various forecasting models for different samples. We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models. TimeFuse utilizes meta-features to characterize input time series and trains a learnable fusor to predict optimal model fusion weights for any given input. The fusor can leverage samples from diverse datasets for joint training, allowing it to adapt to a wide variety of temporal patterns and thus generalize to new inputs, even from unseen datasets. Extensive experiments demonstrate the effectiveness of TimeFuse in various long-/short-term forecasting tasks, achieving near-universal improvement over the state-of-the-art individual models. Code is available at https://github.com/ZhiningLiu1998/TimeFuse.
- Abstract(参考訳): 時系列予測は多くの現実世界のアプリケーションにおいて重要な役割を果たす。
より強力なモデルが開発され、ベンチマークデータセット上で優れた結果が得られたが、きめ細かいサンプルレベルの検査によって明らかとなった。
(i)1つのモデルは、異なるテストサンプルで一貫して他より優れているわけではないが、代わりに
(ii)各モデルは特定の場合に優れる。
これらの結果から,様々な予測モデルの異なる強みを適応的に活用する方法が示唆された。
異種モデルのサンプルレベル適応融合による時系列予測のためのフレームワークであるTimeFuseを紹介する。
TimeFuseはメタ機能を利用して入力時系列を特徴づけ、学習可能なフューザーを訓練し、任意の入力に対して最適なモデル融合重量を予測する。
フューザーは、様々なデータセットのサンプルを共同トレーニングに利用することで、さまざまな時間パターンに適応し、目に見えないデータセットからでも新しい入力に一般化することができる。
様々な長期的・短期的な予測タスクにおけるTimeFuseの有効性を実証し、最先端の個人モデルに対してほぼユニバーサルな改善を実現した。
コードはhttps://github.com/ZhiningLiu1998/TimeFuse.comで入手できる。
関連論文リスト
- TimeCF: A TimeMixer-Based Model with adaptive Convolution and Sharpness-Aware Minimization Frequency Domain Loss for long-term time seris forecasting [5.032613143415414]
本稿では,TimeMixer に基づく時系列予測のためのディープラーニングモデル TimeCF を提案する。
TimeCFは、オリジナルの時系列を異なるスケールのシーケンスに分解する。
異なるスケールはFeed-Forward Networkを通じて集約される。
論文 参考訳(メタデータ) (2025-05-23T06:39:20Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
本稿では,ランダムにサンプリングされた履歴を抽出し,時間連続関数として調整可能な基底組成を出力するニューラルモデルを提案する。
1)長い尾の分布からランダムにサンプリングされたヒストリーを使用する柔軟なアプローチ、(2)これらの活発にサンプリングされたヒストリーに基づいてトレーニングされたトランスフォーマーバックボーンを表現的出力として、(3)時間の連続関数の基底係数を含む。
論文 参考訳(メタデータ) (2024-07-25T08:48:07Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。