Real-time Drift Detection on Time-series Data
- URL: http://arxiv.org/abs/2110.06383v1
- Date: Tue, 12 Oct 2021 22:09:29 GMT
- Title: Real-time Drift Detection on Time-series Data
- Authors: Nandini Ramanan, Rasool Tahmasbi, Marjorie Sayer, Deokwoo Jung,
Shalini Hemachandran, Claudionor Nunes Coelho Jr
- Abstract summary: We propose an approach called Unsupervised Temporal Drift Detector or UTDD to account flexibly for seasonal variation.
This approach efficiently detects temporal concept drift in time series data in the absence of ground truth.
- Score: 0.6303112417588329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practical machine learning applications involving time series data, such as
firewall log analysis to proactively detect anomalous behavior, are concerned
with real time analysis of streaming data. Consequently, we need to update the
ML models as the statistical characteristics of such data may shift frequently
with time. One alternative explored in the literature is to retrain models with
updated data whenever the models accuracy is observed to degrade. However,
these methods rely on near real time availability of ground truth, which is
rarely fulfilled. Further, in applications with seasonal data, temporal concept
drift is confounded by seasonal variation. In this work, we propose an approach
called Unsupervised Temporal Drift Detector or UTDD to flexibly account for
seasonal variation, efficiently detect temporal concept drift in time series
data in the absence of ground truth, and subsequently adapt our ML models to
concept drift for better generalization.
Related papers
- A Hybrid Framework for Real-Time Data Drift and Anomaly Identification Using Hierarchical Temporal Memory and Statistical Tests [14.37149160708975]
This paper proposes a novel hybrid framework combiningHierarchical Temporal Memory (HTM) and Sequential Probability Ratio Test (SPRT) for real-time data drift detection and anomaly identification.
Experimental evaluations demonstrate that the proposed method outperforms conventional drift detection techniques like the Kolmogorov-Smirnov (KS) test, Wasserstein distance, and Population Stability Index (PSI) in terms of accuracy, adaptability, and computational efficiency.
arXiv Detail & Related papers (2025-04-24T18:23:18Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
This paper conducts the first study of the online test-time adaptation techniques for spatial-temporal traffic flow forecasting problems.
We propose an Adaptive Double Correction by Series Decomposition (ADCSD) method, which first decomposes the output of the trained model into seasonal and trend-cyclical parts.
In the proposed ADCSD method, instead of fine-tuning the whole trained model during the testing phase, a lite network is attached after the trained model, and only the lite network is fine-tuned in the testing process each time a data entry is observed.
arXiv Detail & Related papers (2024-01-08T12:04:39Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
We propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs)
This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; and 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones.
arXiv Detail & Related papers (2023-10-09T12:36:16Z) - Towards Flexible Time-to-event Modeling: Optimizing Neural Networks via
Rank Regression [17.684526928033065]
We introduce the Deep AFT Rank-regression model for Time-to-event prediction (DART)
This model uses an objective function based on Gehan's rank statistic, which is efficient and reliable for representation learning.
The proposed method is a semiparametric approach to AFT modeling that does not impose any distributional assumptions on the survival time distribution.
arXiv Detail & Related papers (2023-07-16T13:58:28Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - DeepVARwT: Deep Learning for a VAR Model with Trend [1.9862987223379664]
We propose a new approach that employs deep learning methodology for maximum likelihood estimation of the trend and the dependence structure.
A Long Short-Term Memory (LSTM) network is used for this purpose.
We provide a simulation study and an application to real data.
arXiv Detail & Related papers (2022-09-21T18:23:03Z) - SALAD: Self-Adaptive Lightweight Anomaly Detection for Real-time
Recurrent Time Series [1.0437764544103274]
This paper introduces SALAD, which is a Self-Adaptive Lightweight Anomaly Detection approach based on a special type of recurrent neural networks called Long Short-Term Memory (LSTM)
Experiments based on two real-world open-source time series datasets demonstrate that SALAD outperforms five other state-of-the-art anomaly detection approaches in terms of detection accuracy.
In addition, the results also show that SALAD is lightweight and can be deployed on a commodity machine.
arXiv Detail & Related papers (2021-04-19T10:36:23Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Adjusting for Autocorrelated Errors in Neural Networks for Time Series
Regression and Forecasting [10.659189276058948]
We learn the autocorrelation coefficient jointly with the model parameters in order to adjust for autocorrelated errors.
For time series regression, large-scale experiments indicate that our method outperforms the Prais-Winsten method.
Results across a wide range of real-world datasets show that our method enhances performance in almost all cases.
arXiv Detail & Related papers (2021-01-28T04:25:51Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.