DeepVARwT: Deep Learning for a VAR Model with Trend
- URL: http://arxiv.org/abs/2209.10587v4
- Date: Sat, 20 Apr 2024 02:26:34 GMT
- Title: DeepVARwT: Deep Learning for a VAR Model with Trend
- Authors: Xixi Li, Jingsong Yuan,
- Abstract summary: We propose a new approach that employs deep learning methodology for maximum likelihood estimation of the trend and the dependence structure.
A Long Short-Term Memory (LSTM) network is used for this purpose.
We provide a simulation study and an application to real data.
- Score: 1.9862987223379664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vector autoregressive (VAR) model has been used to describe the dependence within and across multiple time series. This is a model for stationary time series which can be extended to allow the presence of a deterministic trend in each series. Detrending the data either parametrically or nonparametrically before fitting the VAR model gives rise to more errors in the latter part. In this study, we propose a new approach called DeepVARwT that employs deep learning methodology for maximum likelihood estimation of the trend and the dependence structure at the same time. A Long Short-Term Memory (LSTM) network is used for this purpose. To ensure the stability of the model, we enforce the causality condition on the autoregressive coefficients using the transformation of Ansley & Kohn (1986). We provide a simulation study and an application to real data. In the simulation study, we use realistic trend functions generated from real data and compare the estimates with true function/parameter values. In the real data application, we compare the prediction performance of this model with state-of-the-art models in the literature.
Related papers
- When to Trust Your Data: Enhancing Dyna-Style Model-Based Reinforcement Learning With Data Filter [7.886307329450978]
Dyna-style algorithms combine two approaches by using simulated data from an estimated environmental model to accelerate model-free training.
Previous works address this issue by using model ensembles or pretraining the estimated model with data collected from the real environment.
We introduce an out-of-distribution data filter that removes simulated data from the estimated model that significantly diverges from data collected in the real environment.
arXiv Detail & Related papers (2024-10-16T01:49:03Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series.
The temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately.
Greater statistical efficiency and interpretability can be achieved with little loss of temporal information.
arXiv Detail & Related papers (2022-09-02T17:14:24Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Data from Model: Extracting Data from Non-robust and Robust Models [83.60161052867534]
This work explores the reverse process of generating data from a model, attempting to reveal the relationship between the data and the model.
We repeat the process of Data to Model (DtM) and Data from Model (DfM) in sequence and explore the loss of feature mapping information.
Our results show that the accuracy drop is limited even after multiple sequences of DtM and DfM, especially for robust models.
arXiv Detail & Related papers (2020-07-13T05:27:48Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.