EIHW-MTG DiCOVA 2021 Challenge System Report
- URL: http://arxiv.org/abs/2110.06543v1
- Date: Wed, 13 Oct 2021 07:38:54 GMT
- Title: EIHW-MTG DiCOVA 2021 Challenge System Report
- Authors: Adria Mallol-Ragolta and Helena Cuesta and Emilia G\'omez and Bj\"orn
W. Schuller
- Abstract summary: This paper aims to automatically detect COVID-19 patients by analysing the acoustic information embedded in coughs.
We focus on analysing the spectrogram representations of coughing samples with the aim to investigate whether COVID-19 alters the frequency content of these signals.
- Score: 2.3544007354006706
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper aims to automatically detect COVID-19 patients by analysing the
acoustic information embedded in coughs. COVID-19 affects the respiratory
system, and, consequently, respiratory-related signals have the potential to
contain salient information for the task at hand. We focus on analysing the
spectrogram representations of coughing samples with the aim to investigate
whether COVID-19 alters the frequency content of these signals. Furthermore,
this work also assesses the impact of gender in the automatic detection of
COVID-19. To extract deep learnt representations of the spectrograms, we
compare the performance of a cough-specific, and a Resnet18 pre-trained
Convolutional Neural Network (CNN). Additionally, our approach explores the use
of contextual attention, so the model can learn to highlight the most relevant
deep learnt features extracted by the CNN. We conduct our experiments on the
dataset released for the Cough Sound Track of the DiCOVA 2021 Challenge. The
best performance on the test set is obtained using the Resnet18 pre-trained CNN
with contextual attention, which scored an Area Under the Curve (AUC) of 70.91
at 80% sensitivity.
Related papers
- COVID-19 Detection System: A Comparative Analysis of System Performance Based on Acoustic Features of Cough Audio Signals [0.6963971634605796]
This research aims to explore various acoustic features that enhance the performance of machine learning (ML) models in detecting COVID-19 from cough signals.
It investigates the efficacy of three feature extraction techniques, including Mel Frequency Cepstral Coefficients (MFCC), Chroma, and Spectral Contrast features, when applied to two machine learning algorithms, Support Vector Machine (SVM) and Multilayer Perceptron (MLP)
The proposed system provides a practical solution and demonstrates state-of-the-art classification performance, with an AUC of 0.843 on the COUGHVID dataset and 0.953 on the Virufy
arXiv Detail & Related papers (2023-09-08T08:33:24Z) - Audio MFCC-gram Transformers for respiratory insufficiency detection in
COVID-19 [3.6042575355093907]
This work explores speech as a biomarker and investigates the detection of respiratory insufficiency (RI) by analyzing speech samples.
Previous work constructed a dataset of respiratory insufficiency COVID-19 patient utterances and analyzed it by means of a convolutional neural network.
Here, we study how Transformer neural network architectures can improve the performance on RI detection.
arXiv Detail & Related papers (2022-10-25T15:11:40Z) - Developing a multi-variate prediction model for the detection of
COVID-19 from Crowd-sourced Respiratory Voice Data [0.0]
The novelty of this work is in the development of a deep learning model for the identification of COVID-19 patients from voice recordings.
We used the Cambridge University dataset consisting of 893 audio samples, crowd-sourced from 4352 participants that used a COVID-19 Sounds app.
Based on the voice data, we developed deep learning classification models to detect positive COVID-19 cases.
arXiv Detail & Related papers (2022-09-08T11:46:37Z) - COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19
Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex
Ultrasound Augmentation Learning [75.74756992992147]
The global population continues to face significant negative impact by the on-going COVID-19 pandemic.
There has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost effective imaging modality of choice.
A major challenge to building deep neural networks for COVID-19 screening using POCUS is the types of probes used.
arXiv Detail & Related papers (2022-04-29T02:13:39Z) - Cough Detection Using Selected Informative Features from Audio Signals [24.829135966052142]
The models are trained by the dataset combined ESC-50 dataset with self-recorded cough recordings.
The best cough detection model realizes the accuracy, recall, precision and F1-score with 94.9%, 97.1%, 93.1% and 0.95 respectively.
arXiv Detail & Related papers (2021-08-07T23:05:18Z) - Project Achoo: A Practical Model and Application for COVID-19 Detection
from Recordings of Breath, Voice, and Cough [55.45063681652457]
We propose a machine learning method to quickly triage COVID-19 using recordings made on consumer devices.
The approach combines signal processing methods with fine-tuned deep learning networks and provides methods for signal denoising, cough detection and classification.
We have also developed and deployed a mobile application that uses symptoms checker together with voice, breath and cough signals to detect COVID-19 infection.
arXiv Detail & Related papers (2021-07-12T08:07:56Z) - An Approach Towards Physics Informed Lung Ultrasound Image Scoring
Neural Network for Diagnostic Assistance in COVID-19 [0.0]
A novel approach is presented to extract acoustic propagation-based features to highlight the region below pleura in lung ultrasound (LUS)
A neural network, referred to as LUSNet, is trained to classify the LUS images into five classes of varying severity of lung infection to track the progression of COVID-19.
A detailed analysis of the proposed approach on LUS images over the infection to full recovery period of ten confirmed COVID-19 subjects shows an average five-fold cross-validation accuracy, sensitivity, and specificity of 97%, 93%, and 98% respectively over 5000 frames of COVID-19 videos.
arXiv Detail & Related papers (2021-06-13T13:01:53Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
We demonstrate the first attempt to diagnose COVID-19 using end-to-end deep learning from a crowd-sourced dataset of audio samples.
We introduce a novel modelling strategy using a custom deep neural network to diagnose COVID-19 from a joint breath and cough representation.
arXiv Detail & Related papers (2021-01-07T01:13:00Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.