THOMAS: Trajectory Heatmap Output with learned Multi-Agent Sampling
- URL: http://arxiv.org/abs/2110.06607v1
- Date: Wed, 13 Oct 2021 10:05:47 GMT
- Title: THOMAS: Trajectory Heatmap Output with learned Multi-Agent Sampling
- Authors: Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan
Stanciulescu, Fabien Moutarde
- Abstract summary: We present a unified model architecture for fast and simultaneous agent future heatmap estimation.
generating scene-consistent predictions goes beyond the mere generation of collision-free trajectories.
We report our results on the Interaction multi-agent prediction challenge and rank $1st$ on the online test leaderboard.
- Score: 2.424910201171407
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose THOMAS, a joint multi-agent trajectory prediction
framework allowing for efficient and consistent prediction of multi-agent
multi-modal trajectories. We present a unified model architecture for fast and
simultaneous agent future heatmap estimation leveraging hierarchical and sparse
image generation. We demonstrate that heatmap output enables a higher level of
control on the predicted trajectories compared to vanilla multi-modal
trajectory regression, allowing to incorporate additional constraints for
tighter sampling or collision-free predictions in a deterministic way. However,
we also highlight that generating scene-consistent predictions goes beyond the
mere generation of collision-free trajectories. We therefore propose a
learnable trajectory recombination model that takes as input a set of predicted
trajectories for each agent and outputs its consistent reordered recombination.
We report our results on the Interaction multi-agent prediction challenge and
rank $1^{st}$ on the online test leaderboard.
Related papers
- QCNeXt: A Next-Generation Framework For Joint Multi-Agent Trajectory
Prediction [5.312631388611489]
Estimating the joint distribution of on-road agents' future trajectories is essential for autonomous driving.
We propose a next-generation framework for joint multi-agent trajectory prediction called QCNeXt.
Our approach ranks 1st on the Argoverse 2 multi-agent motion forecasting benchmark.
arXiv Detail & Related papers (2023-06-18T09:40:40Z) - MotionDiffuser: Controllable Multi-Agent Motion Prediction using
Diffusion [15.146808801331774]
MotionDiffuser is a diffusion based representation for the joint distribution of future trajectories over multiple agents.
We propose a general constrained sampling framework that enables controlled trajectory sampling based on differentiable cost functions.
We obtain state-of-the-art results for multi-agent motion prediction on the Open Motion dataset.
arXiv Detail & Related papers (2023-06-05T17:55:52Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - JFP: Joint Future Prediction with Interactive Multi-Agent Modeling for
Autonomous Driving [12.460224193998362]
We propose an end-to-end trainable model that learns directly the interaction between pairs of agents in a structured, graphical model formulation.
Our approach improves significantly on the trajectory overlap metrics while obtaining on-par or better performance on single-agent trajectory metrics.
arXiv Detail & Related papers (2022-12-16T20:59:21Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
arXiv Detail & Related papers (2022-03-03T17:44:58Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
We focus on decentralized navigation among multiple non-communicating rational agents at street intersections without traffic signs or signals.
Our key insight is that the geometric structure of the intersection and the incentive of agents to move efficiently and avoid collisions (rationality) reduces the space of likely behaviors.
We design Multiple Topologies Prediction (MTP), a data-driven trajectory-prediction mechanism that reconstructs trajectory representations of high-likelihood modes in multiagent intersection scenes.
arXiv Detail & Related papers (2020-11-08T02:56:42Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.