GoIRL: Graph-Oriented Inverse Reinforcement Learning for Multimodal Trajectory Prediction
- URL: http://arxiv.org/abs/2506.21121v1
- Date: Thu, 26 Jun 2025 09:46:53 GMT
- Title: GoIRL: Graph-Oriented Inverse Reinforcement Learning for Multimodal Trajectory Prediction
- Authors: Muleilan Pei, Shaoshuai Shi, Lu Zhang, Peiliang Li, Shaojie Shen,
- Abstract summary: Trajectory prediction for surrounding agents is a challenging task in autonomous driving.<n>We introduce a novel Graph-oriented Inverse Reinforcement Learning framework, which is an IRL-based predictor equipped with vectorized context representations.<n>Our approach achieves state-of-the-art performance on the large-scale Argoverse & nuScenes motion forecasting benchmarks.
- Score: 35.36975133932852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction for surrounding agents is a challenging task in autonomous driving due to its inherent uncertainty and underlying multimodality. Unlike prevailing data-driven methods that primarily rely on supervised learning, in this paper, we introduce a novel Graph-oriented Inverse Reinforcement Learning (GoIRL) framework, which is an IRL-based predictor equipped with vectorized context representations. We develop a feature adaptor to effectively aggregate lane-graph features into grid space, enabling seamless integration with the maximum entropy IRL paradigm to infer the reward distribution and obtain the policy that can be sampled to induce multiple plausible plans. Furthermore, conditioned on the sampled plans, we implement a hierarchical parameterized trajectory generator with a refinement module to enhance prediction accuracy and a probability fusion strategy to boost prediction confidence. Extensive experimental results showcase our approach not only achieves state-of-the-art performance on the large-scale Argoverse & nuScenes motion forecasting benchmarks but also exhibits superior generalization abilities compared to existing supervised models.
Related papers
- Foresight in Motion: Reinforcing Trajectory Prediction with Reward Heuristics [34.570579623171476]
"First Reasoning, Then Forecasting" is a strategy that explicitly incorporates behavior intentions as spatial guidance for trajectory prediction.<n>We introduce an interpretable, reward-driven intention reasoner grounded in a novel query-centric Inverse Reinforcement Learning scheme.<n>Our approach significantly enhances trajectory prediction confidence, achieving highly competitive performance relative to state-of-the-art methods.
arXiv Detail & Related papers (2025-07-16T09:46:17Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Certified Human Trajectory Prediction [66.1736456453465]
We propose a certification approach tailored for trajectory prediction that provides guaranteed robustness.<n>To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method.<n>We demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Distribution-aware Goal Prediction and Conformant Model-based Planning
for Safe Autonomous Driving [16.654299927694716]
We reformulate the learning-to-drive task as obstacle-aware perception and grounding, distribution-aware goal prediction, and model-based planning.
Under the CARLA simulator, we report state-of-the-art results on the CARNOVEL benchmark.
arXiv Detail & Related papers (2022-12-16T21:51:51Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps [29.67295706224478]
In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories.
We learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution.
In experiments, our method achieves state-of-the-art performance on the Stanford Drone dataset and Intersection Drone dataset.
arXiv Detail & Related papers (2022-03-31T09:24:32Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - THOMAS: Trajectory Heatmap Output with learned Multi-Agent Sampling [2.424910201171407]
We present a unified model architecture for fast and simultaneous agent future heatmap estimation.
generating scene-consistent predictions goes beyond the mere generation of collision-free trajectories.
We report our results on the Interaction multi-agent prediction challenge and rank $1st$ on the online test leaderboard.
arXiv Detail & Related papers (2021-10-13T10:05:47Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.