Oriented Feature Alignment for Fine-grained Object Recognition in
High-Resolution Satellite Imagery
- URL: http://arxiv.org/abs/2110.06628v1
- Date: Wed, 13 Oct 2021 10:48:11 GMT
- Title: Oriented Feature Alignment for Fine-grained Object Recognition in
High-Resolution Satellite Imagery
- Authors: Qi Ming, Junjie Song, Zhiqiang Zhou
- Abstract summary: We analyze the key issues of fine-grained object recognition, and use an oriented feature alignment network (OFA-Net) to achieve high-performance object recognition.
OFA-Net achieves accurate object localization through a rotated bounding boxes refinement module.
The single model of our method achieved mAP of 46.51% in the GaoFen competition and won 3rd place in the ISPRS benchmark with the mAP of 43.73%.
- Score: 1.0635248457021498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oriented object detection in remote sensing images has made great progress in
recent years. However, most of the current methods only focus on detecting
targets, and cannot distinguish fine-grained objects well in complex scenes. In
this technical report, we analyzed the key issues of fine-grained object
recognition, and use an oriented feature alignment network (OFA-Net) to achieve
high-performance fine-grained oriented object recognition in optical remote
sensing images. OFA-Net achieves accurate object localization through a rotated
bounding boxes refinement module. On this basis, the boundary-constrained
rotation feature alignment module is applied to achieve local feature
extraction, which is beneficial to fine-grained object classification. The
single model of our method achieved mAP of 46.51\% in the GaoFen competition
and won 3rd place in the ISPRS benchmark with the mAP of 43.73\%.
Related papers
- Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects.
We show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding.
We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection.
arXiv Detail & Related papers (2023-03-29T18:07:25Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - ImpDet: Exploring Implicit Fields for 3D Object Detection [74.63774221984725]
We introduce a new perspective that views bounding box regression as an implicit function.
This leads to our proposed framework, termed Implicit Detection or ImpDet.
Our ImpDet assigns specific values to points in different local 3D spaces, thereby high-quality boundaries can be generated.
arXiv Detail & Related papers (2022-03-31T17:52:12Z) - Scribble-based Boundary-aware Network for Weakly Supervised Salient
Object Detection in Remote Sensing Images [10.628932392896374]
We propose a novel weakly-supervised salient object detection framework to predict the saliency of remote sensing images from sparse scribble annotations.
Specifically, we design a boundary-aware module (BAM) to explore the object boundary semantics, which is explicitly supervised by the high-confidence object boundary (pseudo) labels.
Then, the boundary semantics are integrated with high-level features to guide the salient object detection under the supervision of scribble labels.
arXiv Detail & Related papers (2022-02-07T20:32:21Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
We propose a flexible framework for monocular 3D object detection which explicitly decouples the truncated objects and adaptively combines multiple approaches for object depth estimation.
Experiments demonstrate that our method outperforms the state-of-the-art method by relatively 27% for the moderate level and 30% for the hard level in the test set of KITTI benchmark.
arXiv Detail & Related papers (2021-04-06T07:01:28Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
3D object detection from a single image is an important task in Autonomous Driving.
We propose an instance-aware approach to aggregate useful information for improving the accuracy of 3D object detection.
arXiv Detail & Related papers (2021-03-05T05:47:52Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Object as Hotspots: An Anchor-Free 3D Object Detection Approach via
Firing of Hotspots [37.16690737208046]
We argue for an approach opposite to existing methods using object-level anchors.
Inspired by compositional models, we propose an object as composition of its interior non-empty voxels, termed hotspots.
Based on OHS, we propose an anchor-free detection head with a novel ground truth assignment strategy.
arXiv Detail & Related papers (2019-12-30T03:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.