Two-argument activation functions learn soft XOR operations like
cortical neurons
- URL: http://arxiv.org/abs/2110.06871v2
- Date: Fri, 15 Oct 2021 05:02:16 GMT
- Title: Two-argument activation functions learn soft XOR operations like
cortical neurons
- Authors: Kijung Yoon, Emin Orhan, Juhyun Kim, Xaq Pitkow
- Abstract summary: We learn canonical activation functions with two input arguments, analogous to basal and apical dendrites.
Remarkably, the resultant nonlinearities often produce soft XOR functions.
Networks with these nonlinearities learn faster and perform better than conventional ReLU nonlinearities with matched parameter counts.
- Score: 6.88204255655161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neurons in the brain are complex machines with distinct functional
compartments that interact nonlinearly. In contrast, neurons in artificial
neural networks abstract away this complexity, typically down to a scalar
activation function of a weighted sum of inputs. Here we emulate more
biologically realistic neurons by learning canonical activation functions with
two input arguments, analogous to basal and apical dendrites. We use a
network-in-network architecture where each neuron is modeled as a multilayer
perceptron with two inputs and a single output. This inner perceptron is shared
by all units in the outer network. Remarkably, the resultant nonlinearities
often produce soft XOR functions, consistent with recent experimental
observations about interactions between inputs in human cortical neurons. When
hyperparameters are optimized, networks with these nonlinearities learn faster
and perform better than conventional ReLU nonlinearities with matched parameter
counts, and they are more robust to natural and adversarial perturbations.
Related papers
- Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Learning dynamic representations of the functional connectome in
neurobiological networks [41.94295877935867]
We introduce an unsupervised approach to learn the dynamic affinities between neurons in live, behaving animals.
We show that our method is able to robustly predict causal interactions between neurons to generate behavior.
arXiv Detail & Related papers (2024-02-21T19:54:25Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks.
Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer.
We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness.
arXiv Detail & Related papers (2023-02-02T16:20:27Z) - Neural network with optimal neuron activation functions based on
additive Gaussian process regression [0.0]
More flexible neuron activation functions would allow using fewer neurons and layers and improve expressive power.
We show that additive Gaussian process regression (GPR) can be used to construct optimal neuron activation functions that are individual to each neuron.
An approach is also introduced that avoids non-linear fitting of neural network parameters.
arXiv Detail & Related papers (2023-01-13T14:19:17Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Continual Learning with Deep Artificial Neurons [0.0]
We introduce Deep Artificial Neurons (DANs), which are themselves realized as deep neural networks.
We demonstrate that it is possible to meta-learn a single parameter vector, which we dub a neuronal phenotype, shared by all DANs in the network.
We show that a suitable neuronal phenotype can endow a single network with an innate ability to update its synapses with minimal forgetting.
arXiv Detail & Related papers (2020-11-13T17:50:10Z) - Estimating Multiplicative Relations in Neural Networks [0.0]
We will use properties of logarithmic functions to propose a pair of activation functions which can translate products into linear expression and learn using backpropagation.
We will try to generalize this approach for some complex arithmetic functions and test the accuracy on a disjoint distribution with the training set.
arXiv Detail & Related papers (2020-10-28T14:28:24Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.