Estimating Multiplicative Relations in Neural Networks
- URL: http://arxiv.org/abs/2010.15003v2
- Date: Thu, 29 Oct 2020 08:38:33 GMT
- Title: Estimating Multiplicative Relations in Neural Networks
- Authors: Bhaavan Goel
- Abstract summary: We will use properties of logarithmic functions to propose a pair of activation functions which can translate products into linear expression and learn using backpropagation.
We will try to generalize this approach for some complex arithmetic functions and test the accuracy on a disjoint distribution with the training set.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Universal approximation theorem suggests that a shallow neural network can
approximate any function. The input to neurons at each layer is a weighted sum
of previous layer neurons and then an activation is applied. These activation
functions perform very well when the output is a linear combination of input
data. When trying to learn a function which involves product of input data, the
neural networks tend to overfit the data to approximate the function. In this
paper we will use properties of logarithmic functions to propose a pair of
activation functions which can translate products into linear expression and
learn using backpropagation. We will try to generalize this approach for some
complex arithmetic functions and test the accuracy on a disjoint distribution
with the training set.
Related papers
- Functional data learning using convolutional neural networks [0.0]
We show how convolutional neural networks can be used in regression and classification learning problems.
We use a specific but typical architecture of a convolutional neural network to perform all the regression exercises.
The method, although simple, shows high accuracy and is promising for future use in engineering and medical applications.
arXiv Detail & Related papers (2023-10-05T04:46:52Z) - Points of non-linearity of functions generated by random neural networks [0.0]
We consider functions from the real numbers to the real numbers, output by a neural network with 1 hidden activation layer, arbitrary width, and ReLU activation function.
We compute the expected distribution of the points of non-linearity.
arXiv Detail & Related papers (2023-04-19T17:40:19Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
We introduce the first algorithm to construct coresets for emphRBFNNs, i.e., small weighted subsets that approximate the loss of the input data on any radial basis function network.
We then perform empirical evaluations on function approximation and dataset subset selection on popular network architectures and data sets.
arXiv Detail & Related papers (2023-03-09T10:08:34Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning.
arXiv Detail & Related papers (2021-07-04T18:20:27Z) - A Use of Even Activation Functions in Neural Networks [0.35172332086962865]
We propose an alternative approach to integrate existing knowledge or hypotheses of data structure by constructing custom activation functions.
We show that using an even activation function in one of the fully connected layers improves neural network performance.
arXiv Detail & Related papers (2020-11-23T20:33:13Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.