論文の概要: Object DGCNN: 3D Object Detection using Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2110.06923v1
- Date: Wed, 13 Oct 2021 17:59:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-14 14:01:18.864967
- Title: Object DGCNN: 3D Object Detection using Dynamic Graphs
- Title(参考訳): DGCNN:動的グラフを用いた3次元物体検出
- Authors: Yue Wang and Justin Solomon
- Abstract要約: 3Dオブジェクト検出は、複雑なトレーニングとテストパイプラインを伴うことが多い。
近年,非最大抑圧型2次元物体検出モデルに着想を得て,点雲上の3次元物体検出アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 32.090268859180334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object detection often involves complicated training and testing
pipelines, which require substantial domain knowledge about individual
datasets. Inspired by recent non-maximum suppression-free 2D object detection
models, we propose a 3D object detection architecture on point clouds. Our
method models 3D object detection as message passing on a dynamic graph,
generalizing the DGCNN framework to predict a set of objects. In our
construction, we remove the necessity of post-processing via object confidence
aggregation or non-maximum suppression. To facilitate object detection from
sparse point clouds, we also propose a set-to-set distillation approach
customized to 3D detection. This approach aligns the outputs of the teacher
model and the student model in a permutation-invariant fashion, significantly
simplifying knowledge distillation for the 3D detection task. Our method
achieves state-of-the-art performance on autonomous driving benchmarks. We also
provide abundant analysis of the detection model and distillation framework.
- Abstract(参考訳): 3Dオブジェクト検出には複雑なトレーニングとテストパイプラインが伴うことが多く、個々のデータセットに関するドメイン知識が必要になります。
近年,非最大抑圧型2次元物体検出モデルに着想を得て,点雲上の3次元物体検出アーキテクチャを提案する。
本手法は動的グラフ上のメッセージパッシングとして3次元物体検出をモデル化し, dgcnnフレームワークを一般化してオブジェクト群を予測する。
提案手法では,オブジェクト信頼度集計や非最大抑圧による後処理の必要性を除去する。
また, スパース点雲からの物体検出を容易にするため, 3次元検出にカスタマイズしたセット・ツー・セット蒸留手法を提案する。
この手法は教師モデルと学生モデルの出力を変分不変の方法で調整し、3次元検出タスクの知識蒸留を大幅に単純化する。
本手法は自動運転ベンチマークにおいて最先端性能を実現する。
また,検出モデルと蒸留フレームワークの豊富な解析を行った。
関連論文リスト
- Diff3DETR:Agent-based Diffusion Model for Semi-supervised 3D Object Detection [33.58208166717537]
3次元物体検出は3次元シーンの理解に不可欠である。
半教師付き手法の最近の発展は、教師による学習フレームワークを用いて、未ラベルの点群に対する擬似ラベルを生成することにより、この問題を緩和しようとしている。
半教師付き3次元物体検出のためのエージェントベース拡散モデル(Diff3DETR)を提案する。
論文 参考訳(メタデータ) (2024-08-01T05:04:22Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Shape-Aware Monocular 3D Object Detection [15.693199934120077]
単分子3次元物体検出モデルを提案する。
この検出は、対象物を取り巻く無関係な領域からの干渉をほとんど避ける。
単分子3次元物体検出モデルに対して,新しい評価基準,すなわち平均深度類似度(ADS)を提案する。
論文 参考訳(メタデータ) (2022-04-19T07:43:56Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
LIDARデータに対する高速な1段3次元物体検出法を提案する。
我々の手法の中核となる新規性は高速かつシングルパスアーキテクチャであり、どちらも3次元の物体を検出し、それらの形状を推定する。
提案手法は,ScanNetシーンのオブジェクト検出で5%,オープンデータセットでは3.4%の精度で結果が得られた。
論文 参考訳(メタデータ) (2020-04-02T17:48:50Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。