論文の概要: Robust MIMO Detection using Hypernetworks with Learned Regularizers
- arxiv url: http://arxiv.org/abs/2110.07053v1
- Date: Wed, 13 Oct 2021 22:07:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 15:10:32.386038
- Title: Robust MIMO Detection using Hypernetworks with Learned Regularizers
- Title(参考訳): 学習正規化器を用いたハイパーネットを用いたロバストMIMO検出
- Authors: Nicolas Zilberstein, Chris Dick, Rahman Doost-Mohammady, Ashutosh
Sabharwal, Santiago Segarra
- Abstract要約: 本稿では,シンボル誤り率(SER)とチャネルの一般性とのバランスをとろうとする手法を提案する。
提案手法は,特定のチャネル上で正常に動作するニューラルネットワークベースの検出器のパラメータを生成するハイパーネットワークに基づいている。
- 参考スコア(独自算出の注目度): 28.917679125825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal symbol detection in multiple-input multiple-output (MIMO) systems is
known to be an NP-hard problem. Recently, there has been a growing interest to
get reasonably close to the optimal solution using neural networks while
keeping the computational complexity in check. However, existing work based on
deep learning shows that it is difficult to design a generic network that works
well for a variety of channels. In this work, we propose a method that tries to
strike a balance between symbol error rate (SER) performance and generality of
channels. Our method is based on hypernetworks that generate the parameters of
a neural network-based detector that works well on a specific channel. We
propose a general framework by regularizing the training of the hypernetwork
with some pre-trained instances of the channel-specific method. Through
numerical experiments, we show that our proposed method yields high performance
for a set of prespecified channel realizations while generalizing well to all
channels drawn from a specific distribution.
- Abstract(参考訳): マルチインプット・マルチアウトプット(MIMO)システムにおける最適シンボル検出はNPハード問題として知られている。
近年,計算複雑性を抑えつつ,ニューラルネットワークを用いた最適解に合理的に近づくことへの関心が高まっている。
しかし、ディープラーニングに基づく既存の研究は、様々なチャネルでうまく機能する汎用ネットワークを設計することが難しいことを示している。
本研究では,シンボル誤り率 (ser) の性能とチャネルの一般化のバランスをとろうとする手法を提案する。
提案手法は,特定のチャネル上でうまく動作するニューラルネットワークに基づく検出器のパラメータを生成するハイパーネットワークに基づいている。
本稿では,ハイパーネットワークのトレーニングをチャネル固有法の事前学習インスタンスで規則化する汎用フレームワークを提案する。
数値実験により,提案手法は,特定の分布から引き出された全てのチャネルに対してよく一般化しながら,事前指定したチャネル実現に対して高い性能を示すことを示す。
関連論文リスト
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
我々は、ダウンリンクシナリオでチャネル推定を実現するために、一般的な残差畳み込みニューラルネットワークをデプロイする。
チャネル推定における他のディープラーニング手法と比較して,平均二乗誤差計算の改善が示唆された。
論文 参考訳(メタデータ) (2022-01-24T19:55:10Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
本稿では,様々な複雑な構造に応用可能な汎用チャネルプルーニング手法を提案する。
我々は、単一チャネルと結合チャネルの重要性を評価するために、フィッシャー情報に基づく統一されたメトリクスを導出する。
提案手法は,結合チャネルを含む任意の構造をプルークするために利用できる。
論文 参考訳(メタデータ) (2021-08-02T08:21:44Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
本稿では,ガウス過程の回帰と組み合わせて実数値列を生成する,計算効率のよいアテンションベースネットワークを提案する。
我々は,GPがフルバッチを用いて訓練されている間,ネットワークのミニバッチトレーニングを可能にするブロックワイズトレーニングアルゴリズムを開発した。
アルゴリズムは収束することが証明され、より良くなくても、見いだされた解の品質に匹敵することを示す。
論文 参考訳(メタデータ) (2021-02-10T01:19:15Z) - Operation-Aware Soft Channel Pruning using Differentiable Masks [51.04085547997066]
本稿では,データ駆動型アルゴリズムを提案する。このアルゴリズムは,操作特性を利用して,ディープニューラルネットワークを異なる方法で圧縮する。
我々は大規模な実験を行い、出力ネットワークの精度で優れた性能を達成する。
論文 参考訳(メタデータ) (2020-07-08T07:44:00Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z) - DeepRx: Fully Convolutional Deep Learning Receiver [8.739166282613118]
DeepRxは完全な畳み込みニューラルネットワークで、周波数領域信号ストリームから5G準拠の方法で未符号化ビットへのレシーバパイプライン全体を実行する。
DeepRxは従来の手法よりも優れています。
論文 参考訳(メタデータ) (2020-05-04T13:53:47Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
複数のシンボルが同時に送信されるマルチユーザマルチインプットマルチアウトプット(MIMO)設定では、正確なシンボル検出が困難である。
本稿では,DeepSICと呼ぶ反復ソフト干渉キャンセリング(SIC)アルゴリズムの,データ駆動による実装を提案する。
DeepSICは、チャネルを線形にすることなく、限られたトレーニングサンプルから共同検出を行うことを学ぶ。
論文 参考訳(メタデータ) (2020-02-08T18:31:00Z) - Deep HyperNetwork-Based MIMO Detection [10.433286163090179]
従来のアルゴリズムは複雑すぎて実用的すぎるか、パフォーマンスが悪いかのどちらかだ。
最近のアプローチでは、ディープニューラルネットワークとして検出器を実装することで、これらの課題に対処しようとした。
本研究では、チャネル行列を入力とし、ニューラルネットワークベースの検出器の重みを生成するハイパーネットワークと呼ばれる追加のニューラルネットワーク(NN)をトレーニングすることで、両方の問題に対処する。
論文 参考訳(メタデータ) (2020-02-07T13:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。