論文の概要: Attentive Gaussian processes for probabilistic time-series generation
- arxiv url: http://arxiv.org/abs/2102.05208v1
- Date: Wed, 10 Feb 2021 01:19:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 16:38:20.053840
- Title: Attentive Gaussian processes for probabilistic time-series generation
- Title(参考訳): 確率時系列生成のための注意ガウス過程
- Authors: Kuilin Chen, Chi-Guhn Lee
- Abstract要約: 本稿では,ガウス過程の回帰と組み合わせて実数値列を生成する,計算効率のよいアテンションベースネットワークを提案する。
我々は,GPがフルバッチを用いて訓練されている間,ネットワークのミニバッチトレーニングを可能にするブロックワイズトレーニングアルゴリズムを開発した。
アルゴリズムは収束することが証明され、より良くなくても、見いだされた解の品質に匹敵することを示す。
- 参考スコア(独自算出の注目度): 4.94950858749529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transduction of sequence has been mostly done by recurrent networks,
which are computationally demanding and often underestimate uncertainty
severely. We propose a computationally efficient attention-based network
combined with the Gaussian process regression to generate real-valued sequence,
which we call the Attentive-GP. The proposed model not only improves the
training efficiency by dispensing recurrence and convolutions but also learns
the factorized generative distribution with Bayesian representation. However,
the presence of the GP precludes the commonly used mini-batch approach to the
training of the attention network. Therefore, we develop a block-wise training
algorithm to allow mini-batch training of the network while the GP is trained
using full-batch, resulting in a scalable training method. The algorithm has
been proved to converge and shows comparable, if not better, quality of the
found solution. As the algorithm does not assume any specific network
architecture, it can be used with a wide range of hybrid models such as neural
networks with kernel machine layers in the scarcity of resources for
computation and memory.
- Abstract(参考訳): シーケンスの変換は主に、計算上要求され、しばしば不確実性を過小評価する再帰的ネットワークによって行われてきた。
本論文では,ガウス過程回帰と組み合わせ,実数値シーケンスを生成する計算効率の高い注意ベースのネットワークを提案する。
提案モデルでは,反復と畳み込みを伴って学習効率を向上するだけでなく,ベイズ表現による因子化生成分布も学習する。
しかし、gpの存在はアテンションネットワークのトレーニングに一般的に使用されるミニバッチアプローチを妨げている。
そこで我々は,GPがフルバッチでトレーニングされている間,ネットワークのミニバッチトレーニングを可能にするブロックワイドトレーニングアルゴリズムを開発した。
このアルゴリズムは収束することが証明されており、見つかったソリューションの品質に匹敵するが、良くない。
アルゴリズムは特定のネットワークアーキテクチャを前提としないため、計算とメモリのリソース不足において、ニューラルネットワークやカーネルマシン層といった幅広いハイブリッドモデルで使用することができる。
関連論文リスト
- Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
ディープオペレータネットワーク(DeepNet)は、様々な科学的・工学的応用における複雑な力学のリアルタイム予測に成功している。
本稿では,DeepONetのトレーニングを取り入れたランダムサンプリング手法を提案する。
実験の結果,訓練中にトランクネットワーク入力にランダム化を組み込むことで,DeepONetの効率性と堅牢性が向上し,複雑な物理系のモデリングにおけるフレームワークの性能向上に期待できる道筋が得られた。
論文 参考訳(メタデータ) (2024-09-20T07:18:31Z) - Learning Discrete Weights and Activations Using the Local
Reparameterization Trick [21.563618480463067]
コンピュータビジョンと機械学習では、ニューラルネットワーク推論の計算とメモリ要求を減らすことが重要な課題である。
ネットワークの重みとアクティベーションをバイナライズすることで、計算の複雑さを大幅に減らすことができる。
これにより、低リソースデバイスにデプロイ可能な、より効率的なニューラルネットワーク推論が可能になる。
論文 参考訳(メタデータ) (2023-07-04T12:27:10Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Classified as unknown: A novel Bayesian neural network [0.0]
完全連結ニューラルネットワークのための効率の良いベイズ学習アルゴリズムを開発した。
多層パーセプトロンから多層パーセプトロンへの二元分類のための単一パーセプトロンのアルゴリズムを一般化する。
論文 参考訳(メタデータ) (2023-01-31T04:27:09Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
本稿では,局所的なエントロピー分布に偏りを持つ強化場を有するBPベースのメッセージパッシングアルゴリズムのファミリについて述べる。
これらのアルゴリズムは、SGDにインスパイアされたソリューションに匹敵するパフォーマンスで、離散重みとアクティベーションを持つ多層ニューラルネットワークをトレーニングすることができる。
論文 参考訳(メタデータ) (2021-10-27T16:52:26Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
本稿では,畳み込みニューラルネットワークの学習にバックプロパゲーションと進化戦略の両方を用いるハイブリッド手法を提案する。
画像分類のタスクにおいて,提案手法は定期的な訓練において改善可能であることを示す。
論文 参考訳(メタデータ) (2020-04-15T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。