論文の概要: Ethics lines and Machine learning: a design and simulation of an
Association Rules Algorithm for exploiting the data
- arxiv url: http://arxiv.org/abs/2110.07370v1
- Date: Thu, 14 Oct 2021 14:01:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-11 12:18:03.241401
- Title: Ethics lines and Machine learning: a design and simulation of an
Association Rules Algorithm for exploiting the data
- Title(参考訳): 倫理線と機械学習:データを活用したアソシエーションルールアルゴリズムの設計とシミュレーション
- Authors: Patrici Calvo and Rebeca Egea-Moreno
- Abstract要約: 本研究の目的は,倫理線から生成・収集したデータから生成されたデータを利用するプロセスを提案することである。
私はAprioriアルゴリズムのシミュレーションアプリケーションを提供し、その可能性、強み、限界を見つけるために合成データを供給します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data mining techniques offer great opportunities for developing ethics lines,
tools for communication, participation and innovation whose main aim is to
ensure improvements and compliance with the values, conduct and commitments
making up the code of ethics. The aim of this study is to suggest a process for
exploiting the data generated by the data generated and collected from an
ethics line by extracting rules of association and applying the Apriori
algorithm. This makes it possible to identify anomalies and behaviour patterns
requiring action to review, correct, promote or expand them, as appropriate.
Finally, I offer a simulated application of the Apriori algorithm, supplying it
with synthetic data to find out its potential, strengths and limitations.
- Abstract(参考訳): データマイニング技術は、倫理規定を構成する価値、行動、コミットメントの改善とコンプライアンスを保証することを目的として、倫理線、コミュニケーション、参加、革新のためのツールを開発する大きな機会を提供する。
本研究の目的は,関係ルールを抽出し,Aprioriアルゴリズムを適用し,倫理線から生成・収集したデータを利用するプロセスを提案することである。
これにより、適切な方法で、レビュー、修正、宣伝、拡張が必要な異常や行動パターンを特定できる。
最後に、Aprioriアルゴリズムのシミュレーションアプリケーションを提供し、その可能性、強度、限界を明らかにするために合成データを供給します。
関連論文リスト
- Beyond Algorithmic Fairness: A Guide to Develop and Deploy Ethical AI-Enabled Decision-Support Tools [0.0]
人工知能(AI)と最適化の統合は、エンジニアリングシステムの効率性、信頼性、レジリエンスを向上させるための大きな約束を持っている。
本稿では,AIと最適化の交差点にアルゴリズムを配置する際に必要となる倫理的考察を明らかにする。
本論文は,ルールの規範的セットを提供するのではなく,研究者間のリフレクションと意識を高めることを目的としている。
論文 参考訳(メタデータ) (2024-09-17T18:37:53Z) - Learnable Item Tokenization for Generative Recommendation [78.30417863309061]
LETTER (Larnable Tokenizer for generaTivE Recommendation) を提案する。
LETTERは、セマンティック正規化のためのResidual Quantized VAE、協調正規化のためのコントラストアライメント損失、コードの割り当てバイアスを軽減するための多様性損失を組み込んでいる。
論文 参考訳(メタデータ) (2024-05-12T15:49:38Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - EALM: Introducing Multidimensional Ethical Alignment in Conversational
Information Retrieval [43.72331337131317]
我々は、倫理的アライメントを、効率的なデータスクリーニングのための初期倫理的判断段階と統合するワークフローを導入する。
本稿では,ETHICSベンチマークから適応したQA-ETHICSデータセットについて述べる。
さらに,二項および多ラベルの倫理的判断タスクにおいて,最高の性能を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T08:22:34Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Detecting Privacy Requirements from User Stories with NLP Transfer
Learning Models [1.6951941479979717]
本稿では,プライバシ関連情報を自動検出することで,アジャイルソフトウェア開発におけるプライバシリスクを低減するアプローチを提案する。
提案手法は自然言語処理(NLP)と言語資源とディープラーニングアルゴリズムを組み合わせて,プライバシの側面をユーザストーリに識別する。
論文 参考訳(メタデータ) (2022-02-02T14:02:13Z) - Learning to Limit Data Collection via Scaling Laws: Data Minimization
Compliance in Practice [62.44110411199835]
我々は機械学習法における文献に基づいて、データとシステム性能を結びつけるデータ解釈に基づく収集を制限するフレームワークを提案する。
我々は、性能曲線微分に基づくデータ最小化基準を定式化し、有効かつ解釈可能な分数法法技術を提供する。
論文 参考訳(メタデータ) (2021-07-16T19:59:01Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z) - Learning data association without data association: An EM approach to
neural assignment prediction [12.970250708769708]
本稿では,データアソシエーションのためのニューラルモデルをトレーニングするための予測最大化手法を提案する。
オブジェクト認識のモデルをトレーニングするためにラベル情報を必要としない。
重要なことに、提案手法を用いてトレーニングされたネットワークは、下流追跡アプリケーションで再利用することができる。
論文 参考訳(メタデータ) (2021-05-02T01:11:09Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z) - Self-Supervised Relational Reasoning for Representation Learning [5.076419064097733]
自己教師型学習では、ラベルのないデータに対して代替ターゲットを定義することにより、代理目的を達成することを課題とする。
本稿では,学習者が無ラベルデータに暗黙的な情報から信号をブートストラップできる,新たな自己教師型関係推論法を提案する。
提案手法は,標準データセット,プロトコル,バックボーンを用いて,厳密な実験手順に従って評価する。
論文 参考訳(メタデータ) (2020-06-10T14:24:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。