論文の概要: Transferring Semantic Knowledge Into Language Encoders
- arxiv url: http://arxiv.org/abs/2110.07382v1
- Date: Thu, 14 Oct 2021 14:11:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 20:46:15.380490
- Title: Transferring Semantic Knowledge Into Language Encoders
- Title(参考訳): 言語エンコーダへの意味知識の伝達
- Authors: Mohammad Umair, Francis Ferraro
- Abstract要約: 意味的意味表現から言語エンコーダへ意味的知識を伝達する手法である意味型ミッドチューニングを導入する。
このアライメントは分類や三重項の損失によって暗黙的に学習できることを示す。
提案手法は, 推論, 理解, テキストの類似性, その他の意味的タスクにおいて, 予測性能の向上を示す言語エンコーダを生成する。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce semantic form mid-tuning, an approach for transferring semantic
knowledge from semantic meaning representations into transformer-based language
encoders. In mid-tuning, we learn to align the text of general sentences -- not
tied to any particular inference task -- and structured semantic
representations of those sentences. Our approach does not require gold
annotated semantic representations. Instead, it makes use of automatically
generated semantic representations, such as from off-the-shelf PropBank and
FrameNet semantic parsers. We show that this alignment can be learned
implicitly via classification or directly via triplet loss. Our method yields
language encoders that demonstrate improved predictive performance across
inference, reading comprehension, textual similarity, and other semantic tasks
drawn from the GLUE, SuperGLUE, and SentEval benchmarks. We evaluate our
approach on three popular baseline models, where our experimental results and
analysis concludes that current pre-trained language models can further benefit
from structured semantic frames with the proposed mid-tuning method, as they
inject additional task-agnostic knowledge to the encoder, improving the
generated embeddings as well as the linguistic properties of the given model,
as evident from improvements on a popular sentence embedding toolkit and a
variety of probing tasks.
- Abstract(参考訳): 意味的意味表現から意味的知識をトランスフォーマーベースの言語エンコーダに変換する手法である意味型ミッドチューニングを導入する。
中間調律では、特定の推論タスクに縛られることなく、一般的な文のテキストとそれらの文の構造的な意味表現を一致させることを学ぶ。
われわれのアプローチは金の注釈付き意味表現を必要としない。
代わりに、既製のPropBankやFrameNetセマンティックパーサなど、自動的に生成されたセマンティック表現を利用する。
このアライメントは分類や三重項損失によって暗黙的に学習できることを示す。
提案手法は,推論,読解,テキストの類似性,およびglue,superglue,stevalベンチマークから引き出された意味的タスク間での予測性能の向上を示す言語エンコーダを生成する。
We evaluate our approach on three popular baseline models, where our experimental results and analysis concludes that current pre-trained language models can further benefit from structured semantic frames with the proposed mid-tuning method, as they inject additional task-agnostic knowledge to the encoder, improving the generated embeddings as well as the linguistic properties of the given model, as evident from improvements on a popular sentence embedding toolkit and a variety of probing tasks.
関連論文リスト
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
ポインター誘導セグメントオーダリング(SO)は,段落レベルのテキスト表現の文脈的理解を高めることを目的とした,新しい事前学習手法である。
実験の結果,ポインタ誘導型事前学習は複雑な文書構造を理解する能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-06T15:17:51Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Towards Computationally Verifiable Semantic Grounding for Language
Models [18.887697890538455]
本論文は、エンティティ関係三重項の集合として形式化された所望のセマンティックメッセージが与えられた条件モデル生成テキストとしてLMを概念化する。
LMを自動エンコーダに埋め込むと、出力が入力メッセージと同じ表現領域にあるセマンティック・フラエンシに出力を送り込む。
提案手法は,グリーディ検索のベースラインを大幅に改善することを示す。
論文 参考訳(メタデータ) (2022-11-16T17:35:52Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
本稿では,既存の事前学習言語モデルを階層型デコーダネットワークに組み込むことを提案する。
第一原理構造をセマンティックアンカーとすることで、2つの新しい中間管理タスクを提案する。
いくつかのセマンティック解析ベンチマークで集中的な実験を行い、我々のアプローチがベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T07:27:29Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
我々は,ニューラルネットワーク表現における意味論と構造学の非教師なしの絡み合いの課題に取り組む。
この目的のために、構造的に類似しているが意味的に異なる文群を自動的に生成する。
我々は、我々の変換クラスタベクトルが、語彙的意味論ではなく構造的特性によって空間に現れることを実証する。
論文 参考訳(メタデータ) (2020-10-11T15:13:18Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
このようなモチベーションを満たすために,セマンティックス対応推論ネットワーク(SAIN)を提案する。
SAINの推論モジュールは、明示的な文脈的セマンティクスを補完的な入力として、セマンティクス上の一連の推論ステップを可能にする。
本モデルでは,機械読解や自然言語推論など11タスクの大幅な改善を実現している。
論文 参考訳(メタデータ) (2020-04-28T07:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。