Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle
Cyberattack Detection
- URL: http://arxiv.org/abs/2110.07467v1
- Date: Thu, 14 Oct 2021 15:40:33 GMT
- Title: Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle
Cyberattack Detection
- Authors: Mhafuzul Islam, Mashrur Chowdhury, Zadid Khan, Sakib Mahmud Khan
- Abstract summary: In a cloud-supported cyber-physical system environment, running a machine learning application in quantum computers is often difficult.
We show that using the hybrid quantum classical NN, it is possible to achieve an attack detection accuracy of 94%.
- Score: 3.09487092349687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A classical computer works with ones and zeros, whereas a quantum computer
uses ones, zeros, and superpositions of ones and zeros, which enables quantum
computers to perform a vast number of calculations simultaneously compared to
classical computers. In a cloud-supported cyber-physical system environment,
running a machine learning application in quantum computers is often difficult,
due to the existing limitations of the current quantum devices. However, with
the combination of quantum-classical neural networks (NN), complex and
high-dimensional features can be extracted by the classical NN to a reduced but
more informative feature space to be processed by the existing quantum
computers. In this study, we develop a hybrid quantum-classical NN to detect an
amplitude shift cyber-attack on an in-vehicle control area network (CAN)
dataset. We show that using the hybrid quantum classical NN, it is possible to
achieve an attack detection accuracy of 94%, which is higher than a Long
short-term memory (LSTM) NN (87%) or quantum NN alone (62%)
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - A Hybrid Quantum-Classical Neural Network Architecture for Binary
Classification [0.0]
We propose a hybrid quantum-classical neural network architecture where each neuron is a variational quantum circuit.
On simulated hardware, we observe that the hybrid neural network achieves roughly 10% higher classification accuracy and 20% better minimization of cost than an individual variational quantum circuit.
arXiv Detail & Related papers (2022-01-05T21:06:30Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
We propose a new hybrid quantum-classical circuit, namely Quantum Fourier Convolutional Network (QFCN)
Our model achieves exponential speed-up compared with classical CNN theoretically and improves over the existing best result of quantum CNN.
We demonstrate the potential of this architecture by applying it to different deep learning tasks, including traffic prediction and image classification.
arXiv Detail & Related papers (2021-06-19T04:37:39Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.