A Hybrid Quantum-Classical Neural Network Architecture for Binary
Classification
- URL: http://arxiv.org/abs/2201.01820v1
- Date: Wed, 5 Jan 2022 21:06:30 GMT
- Title: A Hybrid Quantum-Classical Neural Network Architecture for Binary
Classification
- Authors: Davis Arthur and Prasanna Date
- Abstract summary: We propose a hybrid quantum-classical neural network architecture where each neuron is a variational quantum circuit.
On simulated hardware, we observe that the hybrid neural network achieves roughly 10% higher classification accuracy and 20% better minimization of cost than an individual variational quantum circuit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is one of the most successful and far-reaching strategies used
in machine learning today. However, the scale and utility of neural networks is
still greatly limited by the current hardware used to train them. These
concerns have become increasingly pressing as conventional computers quickly
approach physical limitations that will slow performance improvements in years
to come. For these reasons, scientists have begun to explore alternative
computing platforms, like quantum computers, for training neural networks. In
recent years, variational quantum circuits have emerged as one of the most
successful approaches to quantum deep learning on noisy intermediate scale
quantum devices. We propose a hybrid quantum-classical neural network
architecture where each neuron is a variational quantum circuit. We empirically
analyze the performance of this hybrid neural network on a series of binary
classification data sets using a simulated universal quantum computer and a
state of the art universal quantum computer. On simulated hardware, we observe
that the hybrid neural network achieves roughly 10% higher classification
accuracy and 20% better minimization of cost than an individual variational
quantum circuit. On quantum hardware, we observe that each model only performs
well when the qubit and gate count is sufficiently small.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Methods for Neural Networks and Application to Medical Image
Classification [5.817995726696436]
We introduce two new quantum methods for neural networks.
The first is a quantum orthogonal neural network, which is based on a quantum pyramidal circuit.
The second method is quantum-assisted neural networks, where a quantum computer is used to perform inner product estimation.
arXiv Detail & Related papers (2022-12-14T18:17:19Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
We review the current state of the art in distributed quantum neural networks.
We find that the distribution of quantum datasets shares more similarities with its classical counterpart than does the distribution of quantum models.
arXiv Detail & Related papers (2022-11-14T00:27:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
We propose a new hybrid quantum-classical circuit, namely Quantum Fourier Convolutional Network (QFCN)
Our model achieves exponential speed-up compared with classical CNN theoretically and improves over the existing best result of quantum CNN.
We demonstrate the potential of this architecture by applying it to different deep learning tasks, including traffic prediction and image classification.
arXiv Detail & Related papers (2021-06-19T04:37:39Z) - On quantum neural networks [91.3755431537592]
We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
arXiv Detail & Related papers (2021-04-12T18:30:30Z) - QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum
State Fidelity [13.152233840194473]
We propose a novel architecture QuClassi, a quantum neural network for both binary and multi-class classification.
Powered by a quantum differentiation function along with a hybrid quantum-classic design, QuClassi encodes the data with a reduced number of qubits and generates the quantum circuit, pushing it to the quantum platform for the best states.
arXiv Detail & Related papers (2021-03-21T05:28:37Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Quantum implementation of an artificial feed-forward neural network [0.0]
We show an experimental realization of an artificial feed-forward neural network implemented on a state-of-art superconducting quantum processor.
The network is made of quantum artificial neurons, which individually display a potential advantage in storage capacity.
We demonstrate that this network can be equivalently operated either via classical control or in a completely coherent fashion.
arXiv Detail & Related papers (2019-12-28T16:49:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.