DPGNN: Dual-Perception Graph Neural Network for Representation Learning
- URL: http://arxiv.org/abs/2110.07869v3
- Date: Tue, 23 Jan 2024 12:50:42 GMT
- Title: DPGNN: Dual-Perception Graph Neural Network for Representation Learning
- Authors: Li Zhou, Wenyu Chen, Dingyi Zeng, Shaohuan Cheng, Wanlong Liu, Malu
Zhang, Hong Qu
- Abstract summary: Graph neural networks (GNNs) have drawn increasing attention in recent years and achieved remarkable performance in many graph-based tasks.
Most existing GNNs are based on the message-passing paradigm to iteratively aggregate neighborhood information in a single topology space.
We present a novel message-passing paradigm, based on the properties of multi-step message source, node-specific message output, and multi-space message interaction.
- Score: 21.432960458513826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have drawn increasing attention in recent years
and achieved remarkable performance in many graph-based tasks, especially in
semi-supervised learning on graphs. However, most existing GNNs are based on
the message-passing paradigm to iteratively aggregate neighborhood information
in a single topology space. Despite their success, the expressive power of GNNs
is limited by some drawbacks, such as inflexibility of message source
expansion, negligence of node-level message output discrepancy, and restriction
of single message space. To address these drawbacks, we present a novel
message-passing paradigm, based on the properties of multi-step message source,
node-specific message output, and multi-space message interaction. To verify
its validity, we instantiate the new message-passing paradigm as a
Dual-Perception Graph Neural Network (DPGNN), which applies a node-to-step
attention mechanism to aggregate node-specific multi-step neighborhood
information adaptively. Our proposed DPGNN can capture the structural
neighborhood information and the feature-related information simultaneously for
graph representation learning. Experimental results on six benchmark datasets
with different topological structures demonstrate that our method outperforms
the latest state-of-the-art models, which proves the superiority and
versatility of our method. To our knowledge, we are the first to consider
node-specific message passing in the GNNs.
Related papers
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - GGNNs : Generalizing GNNs using Residual Connections and Weighted
Message Passing [0.0]
GNNs excel at capturing relationships and patterns within graphs, enabling effective learning and prediction tasks.
It is commonly believed that the generalizing power of GNNs is attributed to the message-passing mechanism between layers.
Our technique builds on these results, modifying the message-passing mechanism further: one by weighing the messages before accumulating at each node and another by adding Residual connections.
arXiv Detail & Related papers (2023-11-26T22:22:38Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
We study hierarchical message passing models that leverage a multi-resolution representation of a given graph.
This facilitates learning of features that span large receptive fields without loss of local information.
We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length.
arXiv Detail & Related papers (2021-07-15T16:24:22Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
Graph Neural Networks (GNNs) have led to state-of-the-art performance on a variety of machine learning tasks such as recommendation, node classification and link prediction.
Most existing GNN models exploit a single type of aggregator to aggregate neighboring nodes information.
We propose a novel graph neural network architecture, Graph Attention & Interaction Network (GAIN), for inductive learning on graphs.
arXiv Detail & Related papers (2020-11-03T00:20:24Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.