論文の概要: Learning to Infer Kinematic Hierarchies for Novel Object Instances
- arxiv url: http://arxiv.org/abs/2110.07911v1
- Date: Fri, 15 Oct 2021 07:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 00:42:31.160383
- Title: Learning to Infer Kinematic Hierarchies for Novel Object Instances
- Title(参考訳): 新たなオブジェクトインスタンスのための運動的階層推定の学習
- Authors: Hameed Abdul-Rashid, Miles Freeman, Ben Abbatematteo, George
Konidaris, Daniel Ritchie
- Abstract要約: 我々のシステムは、物体の移動部分とそれらに関連する運動的結合を推測する。
我々は,3次元物体のシミュレーションスキャンによるシステム評価を行い,実世界のロボット操作を駆動するための概念実証を行った。
- 参考スコア(独自算出の注目度): 12.50766181856788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Manipulating an articulated object requires perceiving itskinematic
hierarchy: its parts, how each can move, and howthose motions are coupled.
Previous work has explored per-ception for kinematics, but none infers a
complete kinematichierarchy on never-before-seen object instances, without
relyingon a schema or template. We present a novel perception systemthat
achieves this goal. Our system infers the moving parts ofan object and the
kinematic couplings that relate them. Toinfer parts, it uses a point cloud
instance segmentation neuralnetwork and to infer kinematic hierarchies, it uses
a graphneural network to predict the existence, direction, and typeof edges
(i.e. joints) that relate the inferred parts. We trainthese networks using
simulated scans of synthetic 3D models.We evaluate our system on simulated
scans of 3D objects, andwe demonstrate a proof-of-concept use of our system to
drivereal-world robotic manipulation.
- Abstract(参考訳): 明瞭な物体を操作するには、その部分、それぞれの動きの仕方、動きの仕方などを知覚する必要がある。
以前の研究では、kinematicsのインセプションごとに検討していたが、スキーマやテンプレートに頼ることなく、never-before-seenオブジェクトインスタンスの完全なkinematichierarchyを推測することはない。
この目標を達成する新しい知覚システムを提案する。
我々のシステムは、物体の移動部分とそれらに関連する運動的結合を推測する。
部品を推測するためには、ポイントクラウドインスタンスセグメンテーションニューラルネットを使用し、キネマティック階層を推論するために、推論された部品を関連づけるエッジ(関節)の存在、方向、タイプを予測するためにグラフニューラルネットワークを使用する。
合成3dモデルのシミュレーションスキャンを用いてネットワークをトレーニングし,3dオブジェクトのシミュレーションスキャンによるシステム評価を行い,実世界のロボット操作における概念実証実験を行った。
関連論文リスト
- SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
ロボット工学のための新しい3D事前学習フレームワークSUGARを紹介した。
SUGARは3次元の点雲を通してオブジェクトの意味的、幾何学的、および余分な特性をキャプチャする。
SuGARの3D表現は最先端の2Dおよび3D表現よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-01T21:23:03Z) - Kinematic-aware Prompting for Generalizable Articulated Object
Manipulation with LLMs [53.66070434419739]
汎用的なオブジェクト操作は、ホームアシストロボットにとって不可欠である。
本稿では,物体のキネマティックな知識を持つ大規模言語モデルに対して,低レベル動作経路を生成するキネマティック・アウェア・プロンプト・フレームワークを提案する。
我々のフレームワークは8つのカテゴリで従来の手法よりも優れており、8つの未確認対象カテゴリに対して強力なゼロショット能力を示している。
論文 参考訳(メタデータ) (2023-11-06T03:26:41Z) - NAP: Neural 3D Articulation Prior [31.875925637190328]
本研究では,3次元合成対象モデルを合成する最初の3次元深部生成モデルであるNeural 3D Articulation Prior (NAP)を提案する。
そこで我々はまず,新しい調音木/グラフパラメタライゼーションを設計し,この表現に対して拡散減衰確率モデルを適用した。
分布が互いに影響を及ぼすような幾何構造と運動構造の両方を捉えるために,逆拡散過程を学習するためのグラフアテンション認知ネットワークを設計する。
論文 参考訳(メタデータ) (2023-05-25T17:59:35Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
3Dオブジェクトが与えられた場合、運動予測は移動部と対応する運動パラメータを識別することを目的としている。
階層的部分分割と移動部パラメータのマップを学習するグラフニューラルネットワークを提案する。
ネットワーク予測は、擬似ラベル付き移動情報を持つ大規模な3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2023-03-31T02:37:36Z) - CA$^2$T-Net: Category-Agnostic 3D Articulation Transfer from Single
Image [41.70960551470232]
本稿では,物体の単一画像から静止状態(非有声)3Dモデルへ動きを伝達するニューラルネットワーク手法を提案する。
我々のネットワークは、入力画像に表示される調音を再現するために、オブジェクトのポーズ、部分分割、および対応する動きパラメータを予測することを学習する。
論文 参考訳(メタデータ) (2023-01-05T18:57:12Z) - Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape
Collections [14.899075941080541]
本研究では,部分分割型3次元形状収集における調音運動の発見のための教師なしアプローチを提案する。
私たちのアプローチは、カテゴリクロージャと呼ばれる概念に基づいています。オブジェクトの部分の有効な記述は、オブジェクトを同じ意味圏に保つべきです。
我々は、PartNet-Mobilityデータセットから部品の動きを再発見するためにこれを用いてアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-17T00:50:36Z) - FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects [14.034256001448574]
そこで本研究では,様々な物体の潜在的な動きを学習して予測する視覚ベースシステムを提案する。
我々は,このベクトル場に基づく解析的運動プランナを配置し,最大調音を与えるポリシを実現する。
その結果,本システムは実世界のシミュレーション実験と実世界実験の両方において,最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-05-09T15:35:33Z) - Towards 3D Scene Understanding by Referring Synthetic Models [65.74211112607315]
メソッドは通常、実際のシーンスキャンにおける過剰なアノテーションを緩和する。
合成モデルは、合成特徴の実際のシーンカテゴリを、統一された特徴空間にどのように依存するかを考察する。
実験の結果,ScanNet S3DISデータセットの平均mAPは46.08%,学習データセットは55.49%であった。
論文 参考訳(メタデータ) (2022-03-20T13:06:15Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
本稿では,暗黙的オブジェクトエンコーダ,ニューラルレージアンスフィールド(NeRF),グラフニューラルネットワークに基づく画像観測から構成予測モデルを学習する手法を提案する。
NeRFは3D以前の強みから、シーンを表現するための一般的な選択肢となっている。
提案手法では,学習した潜時空間にRTを応用し,そのモデルと暗黙のオブジェクトエンコーダを用いて潜時空間を情報的かつ効率的にサンプリングする。
論文 参考訳(メタデータ) (2022-02-24T01:31:29Z) - 3D Neural Scene Representations for Visuomotor Control [78.79583457239836]
我々は2次元視覚観測から動的3次元シーンのモデルを純粋に学習する。
学習した表現空間上に構築された動的モデルにより,操作課題に対するビジュモータ制御が可能となる。
論文 参考訳(メタデータ) (2021-07-08T17:49:37Z) - "What's This?" -- Learning to Segment Unknown Objects from Manipulation
Sequences [27.915309216800125]
本稿では,ロボットマニピュレータを用いた自己教師型把握対象セグメンテーションのための新しいフレームワークを提案する。
本稿では,モーションキューとセマンティック知識を共同で組み込んだ,エンドツーエンドのトレーニング可能な単一アーキテクチャを提案する。
我々の手法は、運動ロボットや3Dオブジェクトモデルの視覚的登録にも、正確な手眼の校正や追加センサーデータにも依存しない。
論文 参考訳(メタデータ) (2020-11-06T10:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。