論文の概要: Anomaly Detection in Multi-Agent Trajectories for Automated Driving
- arxiv url: http://arxiv.org/abs/2110.07922v1
- Date: Fri, 15 Oct 2021 08:07:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 15:16:23.560474
- Title: Anomaly Detection in Multi-Agent Trajectories for Automated Driving
- Title(参考訳): 自動走行用マルチエージェントトラジェクタにおける異常検出
- Authors: Julian Wiederer, Arij Bouazizi, Marco Troina, Ulrich Kressel,
Vasileios Belagiannis
- Abstract要約: 人間と同様、自動走行車は異常検出を行う。
私たちの革新は、動的エージェントの複数の軌道を共同で学習する能力です。
- 参考スコア(独自算出の注目度): 2.5211566369910967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human drivers can recognise fast abnormal driving situations to avoid
accidents. Similar to humans, automated vehicles are supposed to perform
anomaly detection. In this work, we propose the spatio-temporal graph
auto-encoder for learning normal driving behaviours. Our innovation is the
ability to jointly learn multiple trajectories of a dynamic number of agents.
To perform anomaly detection, we first estimate a density function of the
learned trajectory feature representation and then detect anomalies in
low-density regions. Due to the lack of multi-agent trajectory datasets for
anomaly detection in automated driving, we introduce our dataset using a
driving simulator for normal and abnormal manoeuvres. Our evaluations show that
our approach learns the relation between different agents and delivers
promising results compared to the related works. The code, simulation and the
dataset are publicly available on the project page:
https://github.com/againerju/maad_highway.
- Abstract(参考訳): 人間ドライバーは事故を避けるために速い異常運転状況を認識することができる。
人間と同様に、自動走行車は異常検出を行う。
本研究では,正規運転行動学習のための時空間グラフ自動エンコーダを提案する。
私たちの革新は、動的エージェントの複数の軌道を共同で学習する能力です。
異常検出を行うために,まず学習した軌跡特徴表現の密度関数を推定し,次に低密度領域における異常を検出する。
自動走行における異常検出のためのマルチエージェント軌道データセットが欠如していることから,運転シミュレータを用いた正常および異常運転のためのデータセットを提案する。
評価の結果,提案手法はエージェント間の関係を学習し,関連する作業と比較して有望な結果をもたらすことがわかった。
コード、シミュレーション、データセットはプロジェクトのページで公開されている。
関連論文リスト
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
World Model(ワールドモデル)は、エージェントの次の状態を予測できるニューラルネットワークである。
エンド・ツー・エンドのトレーニングでは、人間のデモで観察された状態と整合してエラーから回復する方法を学ぶ。
クローズドループ試験における先行技術に有意な改善がみられた定性的,定量的な結果を示す。
論文 参考訳(メタデータ) (2024-09-25T06:48:25Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Detecting Socially Abnormal Highway Driving Behaviors via Recurrent
Graph Attention Networks [4.526932450666445]
本研究は,ハイウェイビデオ監視システムによる軌跡から異常運転行動を検出することに焦点を当てる。
本稿では,周囲の車上での走行動作を文脈的に把握できるリカレントグラフ注意ネットワークを用いたオートエンコーダを提案する。
私たちのモデルは何千もの車で大きな高速道路にスケーラブルです。
論文 参考訳(メタデータ) (2023-04-23T01:32:47Z) - Anomaly Detection in Driving by Cluster Analysis Twice [0.0]
本研究は, クラスタ分析による運転異常検出法(ADDCAT)を提案する。
イベントは、運転の正常さのパターンと見なされる主要なクラスタに適合しない場合、異常であると言われている。
この方法は、事前のトレーニングプロセスや膨大な計算コストを必要とせず、運転中の異常を検出する手段を提供する。
論文 参考訳(メタデータ) (2022-12-15T09:53:49Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
本研究では,条件付き生成逆数ネットワーク(GAN)を用いた運転異常の定量化手法を提案する。
この手法は、事前に観測された信号にモデルを条件付けすることで、今後の運転シナリオを予測する。
結果は知覚的評価によって検証され、アノテータは高い異常スコアで検出されたビデオのリスクと親しみやすさを評価するよう依頼される。
論文 参考訳(メタデータ) (2022-03-15T22:10:01Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Self-awareness in intelligent vehicles: Feature based dynamic Bayesian
models for abnormality detection [4.251384905163326]
本稿では,自律走行車における自己認識性向上のための新しい手法を提案する。
車両からの時系列データは、データ駆動型動的ベイズネットワーク(DBN)モデルの開発に使用される。
協調作業における共同異常検出が可能な初期レベル集団認識モデルを提案する。
論文 参考訳(メタデータ) (2020-10-29T09:29:47Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Driver Anomaly Detection: A Dataset and Contrastive Learning Approach [17.020790792750457]
本稿では,通常の運転と異常運転を区別する指標を学習するための対照的な学習手法を提案する。
本手法はテストセットの0.9673 AUCに到達し,異常検出タスクに対する対照的な学習手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-09-30T13:23:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。