論文の概要: Direct simultaneous speech to speech translation
- arxiv url: http://arxiv.org/abs/2110.08250v1
- Date: Fri, 15 Oct 2021 17:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 14:42:06.763496
- Title: Direct simultaneous speech to speech translation
- Title(参考訳): 音声翻訳への直接同時発話
- Authors: Xutai Ma, Hongyu Gong, Danni Liu, Ann Lee, Yun Tang, Peng-Jen Chen,
Wei-Ning Hsu, Kenneth Heafield, Phillip Koehn, Juan Pino
- Abstract要約: 本稿では,最初の音声音声合成モデル(Simul-S2ST)を提案する。
モデルは、全音源の音声コンテンツを消費する前に、ターゲット音声の翻訳を生成することができる。
- 参考スコア(独自算出の注目度): 29.958601064888132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first direct simultaneous speech-to-speech translation
(Simul-S2ST) model, with the ability to start generating translation in the
target speech before consuming the full source speech content and independently
from intermediate text representations. Our approach leverages recent progress
on direct speech-to-speech translation with discrete units. Instead of
continuous spectrogram features, a sequence of direct representations, which
are learned in a unsupervised manner, are predicted from the model and passed
directly to a vocoder for speech synthesis. The simultaneous policy then
operates on source speech features and target discrete units. Finally, a
vocoder synthesize the target speech from discrete units on-the-fly. We carry
out numerical studies to compare cascaded and direct approach on Fisher
Spanish-English dataset.
- Abstract(参考訳): 本稿では,対象音声に翻訳を生成できる最初の同時音声対音声翻訳(simul-s2st)モデルを提案する。
本手法は, 離散単位を用いた音声対音声翻訳の最近の進歩を生かしたものである。
連続したスペクトログラムの特徴の代わりに、教師なしの方法で学習された直接表現の列がモデルから予測され、音声合成のためのボコーダに直接渡される。
同時ポリシーは、ソース音声の特徴と個別の単位をターゲットとする。
最後に、vocoderは、個別の単位をオンザフライで合成する。
我々は、フィッシャー・スパニッシュ・イングリッシュ・データセットのカスケードと直接アプローチを比較するために数値解析を行った。
関連論文リスト
- SeamlessExpressiveLM: Speech Language Model for Expressive Speech-to-Speech Translation with Chain-of-Thought [12.54786997634534]
本研究は,S2STのための単一言語モデルであるSeamlessExpressiveLMを提案する。
我々は、複雑なソースからターゲットへの音声マッピングを、チェーン・オブ・シークレット・プロンプトで中間生成ステップに分解する。
モデルはまずターゲットのセマンティックコンテンツを翻訳し、次に話者スタイルをマルチストリーム音響ユニットに転送する。
論文 参考訳(メタデータ) (2024-05-30T18:28:31Z) - TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
カスケード方式で多様なデータセットを活用する新しいモデルフレームワークTransVIPを提案する。
本稿では、話者の音声特性と、翻訳過程における音源音声からの等時性を維持するために、2つの分離エンコーダを提案する。
フランス語と英語のペアに関する実験により、我々のモデルは、現在最先端の音声音声翻訳モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-28T04:11:37Z) - Speech-to-Speech Translation with Discrete-Unit-Based Style Transfer [53.72998363956454]
個別の自己教師付き表現を用いた音声音声合成(S2ST)は顕著な精度を達成している。
高品質な話者並列データの不足は、翻訳中にスタイル転送を学習する上での課題となる。
我々は、個別の自己教師付き音声表現と音色単位に基づいて、スタイル変換機能を備えたS2STパイプラインを設計する。
論文 参考訳(メタデータ) (2023-09-14T09:52:08Z) - Direct Text to Speech Translation System using Acoustic Units [12.36988942647101]
本稿では,離散音響単位を用いた音声翻訳システムを提案する。
このフレームワークは、異なるソース言語のテキストを入力として使用し、この言語でテキストの書き起こしを必要とせずに、ターゲット言語で音声を生成する。
提案したアーキテクチャを、より多くの言語で事前訓練されたモデルで初期化すると、結果は顕著に改善される。
論文 参考訳(メタデータ) (2023-09-14T07:35:14Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
既存のシステムは韻律と言語内容の相関を無視し、変換された音声の自然度を低下させる。
自己教師付き離散音声単位を言語表現として活用するカスケードモジュラーシステムを提案する。
実験により,本システムは,自然性,知性,話者伝達性,韻律伝達性において,従来の手法よりも優れていたことがわかった。
論文 参考訳(メタデータ) (2022-11-12T00:54:09Z) - ESSumm: Extractive Speech Summarization from Untranscribed Meeting [7.309214379395552]
本稿では,音声から音声への直接要約のための新しいアーキテクチャであるESSummを提案する。
市販の自己教師型畳み込みニューラルネットワークを利用して、生音声から深層音声の特徴を抽出する。
提案手法は,目的の要約長でキー情報をキャプチャする音声セグメントの最適シーケンスを自動的に予測する。
論文 参考訳(メタデータ) (2022-09-14T20:13:15Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeechは、両側摂動を伴う音声から音声への翻訳モデルである。
我々は,非自己回帰S2ST手法を構築し,繰り返しマスキングを行い,単位選択を予測する。
TranSpeechは推論遅延を大幅に改善し、自動回帰技術よりも最大21.4倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2022-05-25T06:34:14Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。