Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks
- URL: http://arxiv.org/abs/2408.13274v1
- Date: Tue, 20 Aug 2024 02:00:02 GMT
- Title: Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks
- Authors: Hetvi Waghela, Jaydip Sen, Sneha Rakshit,
- Abstract summary: Adversarial attacks pose significant threats to the robustness of deep learning models in image classification.
This paper explores and refines defense mechanisms against these attacks to enhance the resilience of neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks, particularly the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) pose significant threats to the robustness of deep learning models in image classification. This paper explores and refines defense mechanisms against these attacks to enhance the resilience of neural networks. We employ a combination of adversarial training and innovative preprocessing techniques, aiming to mitigate the impact of adversarial perturbations. Our methodology involves modifying input data before classification and investigating different model architectures and training strategies. Through rigorous evaluation of benchmark datasets, we demonstrate the effectiveness of our approach in defending against FGSM and PGD attacks. Our results show substantial improvements in model robustness compared to baseline methods, highlighting the potential of our defense strategies in real-world applications. This study contributes to the ongoing efforts to develop secure and reliable machine learning systems, offering practical insights and paving the way for future research in adversarial defense. By bridging theoretical advancements and practical implementation, we aim to enhance the trustworthiness of AI applications in safety-critical domains.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
We propose a novel approach to counter backdoor attacks by treating their mitigation as an unlearning task.
Our approach offers simplicity and effectiveness, rendering it well-suited for scenarios with limited data availability.
arXiv Detail & Related papers (2024-05-07T00:36:56Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
We analyze attack techniques and propose a robust defense approach.
We successfully reduce model confidence by over 20% using adversarial patch attacks that exploit object shape, texture and position.
Our inpainting defense approach significantly enhances model resilience, achieving high accuracy and reliable localization despite the adversarial attacks.
arXiv Detail & Related papers (2024-03-04T13:32:48Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Robust Adversarial Defense by Tensor Factorization [1.2954493726326113]
This study integrates the tensorization of input data with low-rank decomposition and tensorization of NN parameters to enhance adversarial defense.
The proposed approach demonstrates significant defense capabilities, maintaining robust accuracy even when subjected to the strongest known auto-attacks.
arXiv Detail & Related papers (2023-09-03T04:51:44Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
Deep neural networks are vulnerable to intentionally crafted adversarial examples.
Various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models.
arXiv Detail & Related papers (2021-08-29T08:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.