論文の概要: Predicting Indian Supreme Court Judgments, Decisions, Or Appeals
- arxiv url: http://arxiv.org/abs/2110.09251v2
- Date: Mon, 25 Oct 2021 21:42:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 07:09:26.779388
- Title: Predicting Indian Supreme Court Judgments, Decisions, Or Appeals
- Title(参考訳): インド最高裁判所判決、判決、上訴の予測
- Authors: Sugam Sharma, Ritu Shandilya, and Swadesh Sharma
- Abstract要約: 新たに開発したML対応法定予測モデルとその運用プロトタイプであるeLegPredictを紹介した。
eLegPredictは3072件の最高裁判所事件で訓練されテストされ、精度は76%に達した(F1スコア)。
eLegPredictはエンドユーザを支援するメカニズムを備えており、新しいケース記述を持つドキュメントが指定されたディレクトリにドロップされると、システムはすぐにコンテンツを読み込んで予測を生成する。
- 参考スコア(独自算出の注目度): 0.403831199243454
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Legal predictive models are of enormous interest and value to legal
community. The stakeholders, specially, the judges and attorneys can take the
best advantages of these models to predict the case outcomes to further augment
their future course of actions, for example speeding up the decision making,
support the arguments, strengthening the defense, etc. However, accurately
predicting the legal decisions and case outcomes is an arduous process, which
involves several complex steps -- finding suitable bulk case documents, data
extracting, cleansing and engineering, etc. Additionally, the legal complexity
further adds to its intricacies. In this paper, we introduce our newly
developed ML-enabled legal prediction model and its operational prototype,
eLegPredict; which successfully predicts the Indian supreme court decisions.
The eLegPredict is trained and tested over 3072 supreme court cases and has
achieved 76% accuracy (F1-score). The eLegPredict is equipped with a mechanism
to aid end users, where as soon as a document with new case description is
dropped into a designated directory, the system quickly reads through its
content and generates prediction. To our best understanding, eLegPredict is the
first legal prediction model to predict Indian supreme court decisions.
- Abstract(参考訳): 法的予測モデルは、法律コミュニティにとって大きな関心と価値を持つ。
利害関係者、特に裁判官や弁護士は、これらのモデルの利点を最大限に活用して、ケースの結果を予測することで、例えば、意思決定のスピードアップ、議論の支持、防衛強化など、将来の行動の行程をさらに強化することができます。
しかし、適切なバルクケースドキュメントの検索、データ抽出、クリーンシング、エンジニアリングなど、いくつかの複雑なステップを含む、法的決定とケース結果の正確な予測は難しいプロセスである。
さらに、法的な複雑さはさらに複雑さを増す。
本稿では、新たに開発したml対応法定予測モデルと、その運用プロトタイプelegpredictを紹介し、インド最高裁判所の決定をうまく予測する。
eLegPredictは3072件の最高裁判所事件の訓練と試験が行われ、76%の精度(F1スコア)を達成した。
eLegPredictはエンドユーザを支援するメカニズムを備えており、新しいケース記述を持つドキュメントが指定されたディレクトリにドロップされると、システムはすぐにコンテンツを読み込んで予測を生成する。
eLegPredictは、インドの最高裁判所の決定を予測する最初の法的な予測モデルです。
関連論文リスト
- Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の判断と神経モデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
論文 参考訳(メタデータ) (2024-03-25T15:15:41Z) - PILOT: Legal Case Outcome Prediction with Case Law [43.680862577060765]
判例法を用いて判例結果の予測を行う際の2つのユニークな課題を同定する。
第一に、意思決定において裁判官の基本的な証拠となる関連する前例を特定することが重要である。
第二に、初期の事例は異なる法的文脈に従う可能性があるため、時間とともに法原則の進化を考慮する必要がある。
論文 参考訳(メタデータ) (2024-01-28T21:18:05Z) - SLJP: Semantic Extraction based Legal Judgment Prediction [0.0]
LJP(Lawal Judgment Prediction)は、像、刑期、刑期などの法的要素を推奨する司法支援システムである。
既存のインドのモデルのほとんどは、決定に影響を及ぼす事実記述(FD)に埋め込まれた意味論に十分に集中していなかった。
提案した意味抽出に基づく LJP (SLJP) モデルは, 複雑な非構造化の判例文書理解のための事前学習型変換器の利点を提供する。
論文 参考訳(メタデータ) (2023-12-13T08:50:02Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
我々は、信頼できる電荷予測モデルが法的理論を考慮に入れるべきであると主張している。
本稿では,この課題に従わなければならない信頼に値するモデルの3つの原則を提案する。
以上の結果から,既存の電荷予測モデルはベンチマークデータセットの選択的原理に合致するが,そのほとんどが十分な感度が得られず,無害の予測を満たさないことが示唆された。
論文 参考訳(メタデータ) (2022-10-31T07:32:12Z) - JUSTICE: A Benchmark Dataset for Supreme Court's Judgment Prediction [0.0]
我々は、自然言語処理(NLP)研究やその他のデータ駆動アプリケーションで容易に利用できるように、SCOTUS裁判所の高品質なデータセットを作成することを目指している。
先進的なNLPアルゴリズムを用いて以前の訴訟を分析することにより、訓練されたモデルは裁判所の判断を予測し、分類することができる。
論文 参考訳(メタデータ) (2021-12-06T23:19:08Z) - ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment
Prediction and Explanation [3.285073688021526]
CJPE(Court Judgment Prediction and Explanation)の課題を提案する。
CJPEは、ケースの説明可能な結果を予測するために、自動化システムを必要とします。
我々の最良の予測モデルは、人間の法律専門家の精度が78%であるのに対して、94%である。
論文 参考訳(メタデータ) (2021-05-28T03:07:32Z) - What About the Precedent: An Information-Theoretic Analysis of Common
Law [64.49276556192073]
一般的な法律では、新しい事件の結果は、既存の法令ではなく、前例によって決定されることが多い。
私たちは、2つの長年にわたる法学的な見解を比較することで、この問題に最初に取り組みました。
前例の主張は事件の結果と0.38ナットの情報を共有しているのに対し、前例の事実は0.18ナットの情報しか共有していない。
論文 参考訳(メタデータ) (2021-04-25T11:20:09Z) - Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning [0.0]
法的判断予測は、法律の理論と実践において、長くかつオープンなトピックである。
訴訟や司法行動を予測する様々な方法や技法が、長年にわたって出現してきた。
AI法則推論の出現は、LJPの実行方法とその予測精度に顕著な影響を与える。
論文 参考訳(メタデータ) (2020-09-29T00:12:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。