論文の概要: Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration
- arxiv url: http://arxiv.org/abs/2310.09241v1
- Date: Fri, 13 Oct 2023 16:47:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 12:01:34.738498
- Title: Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration
- Title(参考訳): LLMとドメインモデルによる先行的法的判断予測
- Authors: Yiquan Wu, Siying Zhou, Yifei Liu, Weiming Lu, Xiaozhong Liu, Yating
Zhang, Changlong Sun, Fei Wu, Kun Kuang
- Abstract要約: 法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
- 参考スコア(独自算出の注目度): 52.57055162778548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal Judgment Prediction (LJP) has become an increasingly crucial task in
Legal AI, i.e., predicting the judgment of the case in terms of case fact
description. Precedents are the previous legal cases with similar facts, which
are the basis for the judgment of the subsequent case in national legal
systems. Thus, it is worthwhile to explore the utilization of precedents in the
LJP. Recent advances in deep learning have enabled a variety of techniques to
be used to solve the LJP task. These can be broken down into two categories:
large language models (LLMs) and domain-specific models. LLMs are capable of
interpreting and generating complex natural language, while domain models are
efficient in learning task-specific information. In this paper, we propose the
precedent-enhanced LJP framework (PLJP), a system that leverages the strength
of both LLM and domain models in the context of precedents. Specifically, the
domain models are designed to provide candidate labels and find the proper
precedents efficiently, and the large models will make the final prediction
with an in-context precedents comprehension. Experiments on the real-world
dataset demonstrate the effectiveness of our PLJP. Moreover, our work shows a
promising direction for LLM and domain-model collaboration that can be
generalized to other vertical domains.
- Abstract(参考訳): 法的判断予測(LJP)は、事件事実記述の観点から事件の判断を予測する法的なAIにおいて、ますます重要な課題となっている。
前例は、同様の事実を有する前例であり、これは、後の国家法制度における判決の根拠である。
したがって、LJPにおける先例の利用について検討する価値がある。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
これらは2つのカテゴリに分類できる: 大きな言語モデル(llm)とドメイン固有モデルである。
LLMは複雑な自然言語を解釈・生成し、ドメインモデルはタスク固有の情報を学ぶのに効率的である。
本稿では,LLMとドメインモデルの両方の長所を前例の文脈で活用する,先例拡張 LJP フレームワーク (PLJP) を提案する。
具体的には、ドメインモデルは候補ラベルを提供し、適切な前例を効率的に見つけるように設計されており、大きなモデルはコンテキスト内の前例を理解することで最終的な予測を行う。
実世界のデータセットにおけるPLJPの有効性を示す実験を行った。
さらに,本研究は,他の垂直領域に一般化可能なLLMおよびドメインモデル協調に向けた有望な方向性を示す。
関連論文リスト
- Legal Evalutions and Challenges of Large Language Models [42.51294752406578]
我々は,OPENAI o1モデルを事例研究として,法律規定の適用における大規模モデルの性能評価に利用した。
我々は、オープンソース、クローズドソース、および法律ドメインのために特別に訓練された法律固有のモデルを含む、最先端のLLMを比較します。
論文 参考訳(メタデータ) (2024-11-15T12:23:12Z) - TransformLLM: Adapting Large Language Models via LLM-Transformed Reading Comprehension Text [5.523385345486362]
法的な応用に特化して設計された言語モデルを開発した。
我々の革新的なアプローチは、Large Language Models (LLMs) を用いて、生のトレーニングデータを読解テキストに変換することによって、法的タスクの能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-28T19:32:18Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
人間の推論に触発されたAsk-Discriminate-Predict(ADAPT)推論フレームワークを紹介する。
ADAPTは、ケース事実を分解し、潜在的な電荷を識別し、最終的な判断を予測する。
広く利用されている2つのデータセットに対して行われた実験は、法的な判断予測において、我々のフレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-02T05:43:15Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - Modeling Legal Reasoning: LM Annotation at the Edge of Human Agreement [3.537369004801589]
我々は法学哲学に基づく法学推論の分類について研究する。
我々は、ドメインの専門家チームによって注釈付けされた、アメリカ合衆国最高裁判所の歴史的意見の新しいデータセットを使用します。
生成モデルは、人間のアノテーションに提示される命令と同等の命令が与えられた場合、性能が良くないことがわかった。
論文 参考訳(メタデータ) (2023-10-27T19:27:59Z) - A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and
Challenges [73.34944216896837]
法定判断予測(LJP)は,事実記述に基づく判断結果の自動予測に自然言語処理(NLP)技術を適用している。
6言語で31のLJPデータセットを分析し、その構築過程を示し、LJPの分類方法を定義する。
異なる訴訟の8つの代表的データセットに対する最先端の結果を示し、オープンな課題について議論する。
論文 参考訳(メタデータ) (2022-04-11T04:06:28Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。