Comparing Deep Neural Nets with UMAP Tour
- URL: http://arxiv.org/abs/2110.09431v1
- Date: Mon, 18 Oct 2021 15:59:13 GMT
- Title: Comparing Deep Neural Nets with UMAP Tour
- Authors: Mingwei Li, Carlos Scheidegger
- Abstract summary: UMAP Tour is built to visually inspect and compare internal behavior of real-world neural network models.
We find concepts learned in state-of-the-art models and dissimilarities between them, such as GoogLeNet and ResNet.
- Score: 12.910602784766562
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural networks should be interpretable to humans. In particular, there is a
growing interest in concepts learned in a layer and similarity between layers.
In this work, a tool, UMAP Tour, is built to visually inspect and compare
internal behavior of real-world neural network models using well-aligned,
instance-level representations. The method used in the visualization also
implies a new similarity measure between neural network layers. Using the
visual tool and the similarity measure, we find concepts learned in
state-of-the-art models and dissimilarities between them, such as GoogLeNet and
ResNet.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
We provide the definition of what we call functionally equivalent features.
These features produce equivalent output under certain transformations.
We propose an efficient algorithm named Iterative Feature Merging.
arXiv Detail & Related papers (2023-10-10T16:27:12Z) - Model Stitching: Looking For Functional Similarity Between
Representations [5.657258033928475]
We expand on a previous work which used model stitching to compare representations of the same shapes learned by differently seeded and/or trained neural networks of the same architecture.
We reveal unexpected behavior of model stitching. Namely, we find that stitching, based on convolutions, for small ResNets, can reach high accuracy if those layers come later in the first (sender) network than in the second (receiver)
arXiv Detail & Related papers (2023-03-20T17:12:42Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
We show how to explore high-dimensional landscape characteristics of neural networks.
We generalize observations on small neural networks to more complex systems.
An interactive dashboard opens up a number of possible application networks.
arXiv Detail & Related papers (2022-04-09T16:41:53Z) - Grounding Psychological Shape Space in Convolutional Neural Networks [0.0]
We use convolutional neural networks to learn a generalizable mapping between perceptual inputs and a recently proposed psychological similarity space for the shape domain.
Our results indicate that a classification-based multi-task learning scenario yields the best results, but that its performance is relatively sensitive to the dimensionality of the similarity space.
arXiv Detail & Related papers (2021-11-16T12:21:07Z) - Similarity and Matching of Neural Network Representations [0.0]
We employ a toolset -- dubbed Dr. Frankenstein -- to analyse the similarity of representations in deep neural networks.
We aim to match the activations on given layers of two trained neural networks by joining them with a stitching layer.
arXiv Detail & Related papers (2021-10-27T17:59:46Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z) - Contrastive Similarity Matching for Supervised Learning [13.750624267664156]
We propose a biologically-plausible solution to the credit assignment problem motivated by observations in the ventral visual pathway and trained deep neural networks.
In both, representations of objects in the same category become progressively more similar, while objects belonging to different categories become less similar.
We formulate this idea using a contrastive similarity matching objective function and derive from it deep neural networks with feedforward, lateral, and feedback connections.
arXiv Detail & Related papers (2020-02-24T17:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.