論文の概要: Cross-Vendor CT Image Data Harmonization Using CVH-CT
- arxiv url: http://arxiv.org/abs/2110.09693v1
- Date: Tue, 19 Oct 2021 02:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-21 00:24:32.008004
- Title: Cross-Vendor CT Image Data Harmonization Using CVH-CT
- Title(参考訳): CVH-CTを用いたクロスベンダCT画像の高調波化
- Authors: Md Selim, Jie Zhang, Baowei Fei, Guo-Qiang Zhang, Gary Yeeming Ge, Jin
Chen
- Abstract要約: 異なるスキャナーを用いて撮像したCT画像データを調和させる方法は、大規模な大規模放射能研究において不可欠である。
本研究では,異なるベンダーのスキャナーを用いたCT画像の調和化のための,CVH-CTと呼ばれる新しい深層学習手法を提案する。
- 参考スコア(独自算出の注目度): 9.920558110069221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While remarkable advances have been made in Computed Tomography (CT), most of
the existing efforts focus on imaging enhancement while reducing radiation
dose. How to harmonize CT image data captured using different scanners is vital
in cross-center large-scale radiomics studies but remains the boundary to
explore. Furthermore, the lack of paired training image problem makes it
computationally challenging to adopt existing deep learning models. %developed
for CT image standardization. %this problem more challenging. We propose a
novel deep learning approach called CVH-CT for harmonizing CT images captured
using scanners from different vendors. The generator of CVH-CT uses a
self-attention mechanism to learn the scanner-related information. We also
propose a VGG feature-based domain loss to effectively extract texture
properties from unpaired image data to learn the scanner-based texture
distributions. The experimental results show that CVH-CT is clearly better than
the baselines because of the use of the proposed domain loss, and CVH-CT can
effectively reduce the scanner-related variability in terms of radiomic
features.
- Abstract(参考訳): CT(Computed Tomography)では顕著な進歩があったが、既存の取り組みのほとんどは放射線線量を減らすことによる画像強調に焦点を当てている。
異なるスキャナーで撮影されたct画像データの調和は、クロスセンターの大規模放射能研究において不可欠であるが、探索すべき境界は依然として残っている。
さらに、ペアのトレーニング画像問題がないため、既存のディープラーニングモデルを採用することは計算的に困難である。
%であった。
%) より困難である。
本稿では,異なるベンダーのスキャナーを用いたCT画像の調和のための,CVH-CTと呼ばれる新しいディープラーニング手法を提案する。
CVH-CTのジェネレータは自己認識機構を使用してスキャナ関連情報を学習する。
また,画像データからテクスチャ特性を効果的に抽出し,スキャナに基づくテクスチャ分布を学習するためのVGG特徴量に基づくドメイン損失を提案する。
実験の結果, CVH-CTはドメイン損失が提案されているため, ベースラインよりも明らかに優れており, CVH-CTは放射線学的特徴の点において, スキャナー関連変動を効果的に低減できることがわかった。
関連論文リスト
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
我々は, NDCTデータのみを用いて, WIA-LD2NDと呼ばれる新しい自己監督型CT画像復調法を提案する。
WIA-LD2ND は Wavelet-based Image Alignment (WIA) と Frequency-Aware Multi-scale Loss (FAM) の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2024-03-18T11:20:11Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Enhancing Super-Resolution Networks through Realistic Thick-Slice CT Simulation [4.43162303545687]
深層学習に基づく生成モデルでは、低分解能CT画像を長い取得時間なしで高分解能CT画像に変換する可能性があり、薄スライスCT画像では放射線暴露が増大する。
これらの超解法(SR)モデルの適切なトレーニングデータを取得することは困難である。
これまでのSR研究では、薄いスライスCT画像から厚いスライスCT画像をシミュレートして、トレーニングペアを作成していた。
我々は,薄スライスCT画像から厚いCT画像を生成するための単純かつ現実的な手法を導入し,SRアルゴリズムのトレーニングペアの作成を容易にする。
論文 参考訳(メタデータ) (2023-07-02T11:09:08Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
胸部CT画像から新型コロナウイルスの症例を検出するための大規模ベンチマークデータセットであるCOVIDx CT-3を紹介する。
COVIDx CT-3には、少なくとも17カ国で6,068人の患者から431,205個のCTスライスが含まれている。
我々は, COVIDx CT-3データセットのデータ多様性と潜在的なバイアスについて検討し, 地理的, 集団的不均衡について検討した。
論文 参考訳(メタデータ) (2022-06-07T06:35:48Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
放射線線量が少ないと、ノイズやアーティファクトが増加し、臨床診断に大きな影響を及ぼす可能性がある。
高品質な全身低線量CT(LDCT)画像を得るため,従来の深層学習に基づく研究は様々なネットワークアーキテクチャを導入している。
本稿では,NDCT画像から抽出した知識を活用する,新しいタスク内知識伝達手法を提案する。
論文 参考訳(メタデータ) (2021-12-01T06:46:38Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
胸部CTスキャンの小さなデータセットを用いて,大規模な3次元合成CTスキャンボリュームを生成するCT-SGANモデルを提案する。
その結果,CT-SGANは大量の合成データに基づいて結節を事前訓練することにより,肺検出精度を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-10-14T22:20:40Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - COVID-19 CT Image Synthesis with a Conditional Generative Adversarial
Network [26.12568967493797]
コロナウイルス感染症2019(COVID-19)は、2019年12月以降急速に拡大している世界的なパンデミックである。
リアルタイム逆転写ポリメラーゼ鎖反応 (rRT-PCR) と胸部CT画像撮影 (CT) はどちらも新型コロナウイルスの診断において重要な役割を担っている。
深層学習に基づくコンピュータビジョン手法は、医用画像の応用において非常に有望であることを示す。
論文 参考訳(メタデータ) (2020-07-29T07:20:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。