Neural Network Compatible Off-Policy Natural Actor-Critic Algorithm
- URL: http://arxiv.org/abs/2110.10017v1
- Date: Tue, 19 Oct 2021 14:36:45 GMT
- Title: Neural Network Compatible Off-Policy Natural Actor-Critic Algorithm
- Authors: Raghuram Bharadwaj Diddigi, Prateek Jain, Prabuchandran K.J., Shalabh
Bhatnagar
- Abstract summary: Learning optimal behavior from existing data is one of the most important problems in Reinforcement Learning (RL)
This is known as "off-policy control" in RL where an agent's objective is to compute an optimal policy based on the data obtained from the given policy (known as the behavior policy)
This work proposes an off-policy natural actor-critic algorithm that utilizes state-action distribution correction for handling the off-policy behavior and the natural policy gradient for sample efficiency.
- Score: 16.115903198836694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning optimal behavior from existing data is one of the most important
problems in Reinforcement Learning (RL). This is known as "off-policy control"
in RL where an agent's objective is to compute an optimal policy based on the
data obtained from the given policy (known as the behavior policy). As the
optimal policy can be very different from the behavior policy, learning optimal
behavior is very hard in the "off-policy" setting compared to the "on-policy"
setting where new data from the policy updates will be utilized in learning.
This work proposes an off-policy natural actor-critic algorithm that utilizes
state-action distribution correction for handling the off-policy behavior and
the natural policy gradient for sample efficiency. The existing natural
gradient-based actor-critic algorithms with convergence guarantees require
fixed features for approximating both policy and value functions. This often
leads to sub-optimal learning in many RL applications. On the other hand, our
proposed algorithm utilizes compatible features that enable one to use
arbitrary neural networks to approximate the policy and the value function and
guarantee convergence to a locally optimal policy. We illustrate the benefit of
the proposed off-policy natural gradient algorithm by comparing it with the
vanilla gradient actor-critic algorithm on benchmark RL tasks.
Related papers
- Beyond Expected Returns: A Policy Gradient Algorithm for Cumulative Prospect Theoretic Reinforcement Learning [0.46040036610482665]
Cumulative Prospect Theory (CPT) has been developed to provide a better model for human-based decision-making supported by empirical evidence.
A few years ago, CPT has been combined with Reinforcement Learning (RL) to formulate a CPT policy optimization problem.
We show that our policy gradient algorithm scales better to larger state spaces compared to the existing zeroth order algorithm for solving the same problem.
arXiv Detail & Related papers (2024-10-03T15:45:39Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Policy Gradient Algorithms Implicitly Optimize by Continuation [7.351769270728942]
We argue that exploration in policy-gradient algorithms consists in a continuation of the return of the policy at hand, and that policies should be history-dependent rather than to maximize the return.
arXiv Detail & Related papers (2023-05-11T14:50:20Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Value Enhancement of Reinforcement Learning via Efficient and Robust
Trust Region Optimization [14.028916306297928]
Reinforcement learning (RL) is a powerful machine learning technique that enables an intelligent agent to learn an optimal policy.
We propose a novel value enhancement method to improve the performance of a given initial policy computed by existing state-of-the-art RL algorithms.
arXiv Detail & Related papers (2023-01-05T18:43:40Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.
Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.
We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators [88.54210578912554]
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning.
In this paper, we propose our closed-form policy improvement operators.
We empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
arXiv Detail & Related papers (2022-11-29T06:29:26Z) - Learning Optimal Antenna Tilt Control Policies: A Contextual Linear
Bandit Approach [65.27783264330711]
Controlling antenna tilts in cellular networks is imperative to reach an efficient trade-off between network coverage and capacity.
We devise algorithms learning optimal tilt control policies from existing data.
We show that they can produce optimal tilt update policy using much fewer data samples than naive or existing rule-based learning algorithms.
arXiv Detail & Related papers (2022-01-06T18:24:30Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms.
We develop convergence guarantees for entropy-regularized NPG methods under softmax parameterization.
Our results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
arXiv Detail & Related papers (2020-07-13T17:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.