Persistent homology of quantum entanglement
- URL: http://arxiv.org/abs/2110.10214v3
- Date: Thu, 16 Feb 2023 18:19:07 GMT
- Title: Persistent homology of quantum entanglement
- Authors: Bart Olsthoorn
- Abstract summary: We study the structure of entanglement entropy using persistent homology.
The inverse quantum mutual information between pairs of sites is used as a distance metric to form a filtered simplicial complex.
We also discuss the promising future applications of this modern computational approach, including its connection to the question of how spacetime could emerge from entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structure in quantum entanglement entropy is often leveraged to focus on a
small corner of the exponentially large Hilbert space and efficiently
parameterize the problem of finding ground states. A typical example is the use
of matrix product states for local and gapped Hamiltonians. We study the
structure of entanglement entropy using persistent homology, a relatively new
method from the field of topological data analysis. The inverse quantum mutual
information between pairs of sites is used as a distance metric to form a
filtered simplicial complex. Both ground states and excited states of common
spin models are analyzed as an example. Furthermore, the effect of homology
with different coefficients and boundary conditions is also explored. Beyond
these basic examples, we also discuss the promising future applications of this
modern computational approach, including its connection to the question of how
spacetime could emerge from entanglement.
Related papers
- Entanglement entropy bounds for pure states of rapid decorrelation [0.0]
We construct high fidelity approximations of relatively low complexity for pure states of quantum lattice systems.
The applicability of the general results is demonstrated on the quantum Ising model in transverse field.
We establish an area-law type bound on the entanglement in the model's subcritical ground states, valid in all dimensions and up to the model's quantum phase transition.
arXiv Detail & Related papers (2024-06-14T17:28:03Z) - Area laws and thermalization from classical entropies in a Bose-Einstein condensate [0.0]
Local quantum entropies are nonlinear functionals of the underlying quantum state.
We show that suitably chosen classical entropies capture the very same features as their quantum analogs.
arXiv Detail & Related papers (2024-04-18T16:53:03Z) - Area laws from classical entropies [0.0]
The area law-like scaling of local quantum entropies is the central characteristic of the entanglement inherent in quantum fields, many-body systems, and spacetime.
We show that it equally manifests in classical entropies over measurement distributions when vacuum contributions dictated by the uncertainty principle are subtracted.
arXiv Detail & Related papers (2024-04-18T16:52:56Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Entanglement Spectroscopy and probing the Li-Haldane Conjecture in
Topological Quantum Matter [0.0]
Topological phases are characterized by their entanglement properties.
We propose to leverage the power of synthetic quantum systems for measuring entanglement via the Entanglement Hamiltonian.
arXiv Detail & Related papers (2021-10-08T06:13:51Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Evolution of confined quantum scalar fields in curved spacetime. Part II [0.0]
We develop a method for computing the Bogoliubov transformation experienced by a confined quantum scalar field in a globally hyperbolic spacetime.
We prove this utility by addressing two problems in the perturbative regime: Dynamical Casimir Effect and gravitational wave resonance.
arXiv Detail & Related papers (2021-06-28T18:05:50Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.