Entanglement entropy bounds for pure states of rapid decorrelation
- URL: http://arxiv.org/abs/2406.10194v1
- Date: Fri, 14 Jun 2024 17:28:03 GMT
- Title: Entanglement entropy bounds for pure states of rapid decorrelation
- Authors: Michael Aizenman, Simone Warzel,
- Abstract summary: We construct high fidelity approximations of relatively low complexity for pure states of quantum lattice systems.
The applicability of the general results is demonstrated on the quantum Ising model in transverse field.
We establish an area-law type bound on the entanglement in the model's subcritical ground states, valid in all dimensions and up to the model's quantum phase transition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For pure states of multi-dimensional quantum lattice systems, which in a convenient computational basis have amplitude and phase structure of sufficiently rapid decorrelation, we construct high fidelity approximations of relatively low complexity. These are used for a conditional proof of area-law bounds for the states' entanglement entropy. The condition is also shown to imply exponential decay of the state's mutual information between disjoint regions, and hence exponential clustering of local observables. The applicability of the general results is demonstrated on the quantum Ising model in transverse field. Combined with available model-specific information on spin-spin correlations, we establish an area-law type bound on the entanglement in the model's subcritical ground states, valid in all dimensions and up to the model's quantum phase transition.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Universal bounds for quantum metrology in the presence of correlated noise [0.0]
We derive fundamental bounds for general quantum metrological models involving both temporal or spatial correlations.
Although the bounds are not guaranteed to be tight in general, their tightness may be systematically increased by increasing numerical complexity.
arXiv Detail & Related papers (2024-10-02T18:00:00Z) - Area laws and thermalization from classical entropies in a Bose-Einstein condensate [0.0]
Local quantum entropies are nonlinear functionals of the underlying quantum state.
We show that suitably chosen classical entropies capture the very same features as their quantum analogs.
arXiv Detail & Related papers (2024-04-18T16:53:03Z) - Conditional Independence of 1D Gibbs States with Applications to Efficient Learning [0.23301643766310368]
We show that spin chains in thermal equilibrium have a correlation structure in which individual regions are strongly correlated at most with their near vicinity.
We prove that these measures decay superexponentially at every positive temperature.
arXiv Detail & Related papers (2024-02-28T17:28:01Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Entanglement entropy of higher rank topological phases [0.0]
We study entanglement entropy of unusual $mathbbZ_N$ topological stabilizer codes which admit fractional excitations with restricted mobility constraint.
It is widely known that the sub-leading term of the entanglement entropy of a disk geometry in conventional topologically ordered phases is related to the total number of the quantum dimension of the fractional excitations.
arXiv Detail & Related papers (2023-02-22T16:06:01Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Persistent homology of quantum entanglement [0.0]
We study the structure of entanglement entropy using persistent homology.
The inverse quantum mutual information between pairs of sites is used as a distance metric to form a filtered simplicial complex.
We also discuss the promising future applications of this modern computational approach, including its connection to the question of how spacetime could emerge from entanglement.
arXiv Detail & Related papers (2021-10-19T19:23:39Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.