Area laws from classical entropies
- URL: http://arxiv.org/abs/2404.12320v1
- Date: Thu, 18 Apr 2024 16:52:56 GMT
- Title: Area laws from classical entropies
- Authors: Tobias Haas,
- Abstract summary: The area law-like scaling of local quantum entropies is the central characteristic of the entanglement inherent in quantum fields, many-body systems, and spacetime.
We show that it equally manifests in classical entropies over measurement distributions when vacuum contributions dictated by the uncertainty principle are subtracted.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The area law-like scaling of local quantum entropies is the central characteristic of the entanglement inherent in quantum fields, many-body systems, and spacetime. Whilst the area law is primarily associated with the entanglement structure of the underlying quantum state, we here show that it equally manifests in classical entropies over measurement distributions when vacuum contributions dictated by the uncertainty principle are subtracted. Using the examples of the Gaussian ground and thermal states, but also the non-Gaussian particle state of a relativistic scalar field, we present analytical and numerical area laws for the entropies of various distributions and unveil how quantities of widespread interest such as the central charge and the (local) temperature are encoded in classical observables. With our approach, quantum entropies are no longer necessary to probe quantum phenomena, thereby rendering area laws and other quantum features directly accessible to theoretical models of high complexity as well as state-of-the-art experiments.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Strict area law entanglement versus chirality [15.809015657546915]
Chirality is a gapped phase of matter in two spatial dimensions that can be manifested through non-zero thermal or electrical Hall conductance.
We prove two no-go theorems that forbid such chirality for a quantum state in a finite dimensional local Hilbert space with strict area law entanglement entropies.
arXiv Detail & Related papers (2024-08-19T18:00:01Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Area laws for classical entropies in a spin-1 Bose-Einstein condensate [0.0]
We provide a variety of analytic and numerical evidence that suitably chosen classical entropies and classical mutual informations thereof contain the typical feature of quantum entropies known in quantum field theories.
We estimate entropic quantities from a finite number of samples without any additional assumptions on the underlying quantum state using k-nearest neighbor estimators.
arXiv Detail & Related papers (2024-04-18T16:53:17Z) - Area laws and thermalization from classical entropies in a Bose-Einstein condensate [0.0]
Local quantum entropies are nonlinear functionals of the underlying quantum state.
We show that suitably chosen classical entropies capture the very same features as their quantum analogs.
arXiv Detail & Related papers (2024-04-18T16:53:03Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Geometric Event-Based Relativistic Quantum Mechanics [8.057006406834466]
We propose a special relativistic framework for quantum mechanics.
It is based on introducing a Hilbert space for events.
Our theory satisfies the full Poincare' symmetry as a geometric' unitary transformation.
arXiv Detail & Related papers (2022-06-16T17:58:09Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Time-inhomogeneous Quantum Walks with Decoherence on Discrete Infinite
Spaces [0.2538209532048866]
Recently, a unified time-inhomogeneous coin-turning random walk with rescaled limiting distributions, Bernoulli, uniform, arcsine and semicircle laws as parameter varies have been obtained.
We obtained a representation theorem for time-inhomogeneous quantum walk on discrete infinite state space.
The convergence of the distributions of the decoherent quantum walks are numerically estimated.
arXiv Detail & Related papers (2021-04-19T07:50:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.