論文の概要: Detecting Backdoor Attacks Against Point Cloud Classifiers
- arxiv url: http://arxiv.org/abs/2110.10354v1
- Date: Wed, 20 Oct 2021 03:12:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-24 01:05:50.809803
- Title: Detecting Backdoor Attacks Against Point Cloud Classifiers
- Title(参考訳): ポイントクラウド分類器に対するバックドア攻撃の検出
- Authors: Zhen Xiang, David J. Miller, Siheng Chen, Xi Li and George Kesidis
- Abstract要約: ポイントクラウド(PC)分類器に対する最初のBAが提案され、自律運転を含む多くの重要なアプリケーションに対する新たな脅威が生まれた。
本稿では,PC分類器がトレーニングセットにアクセスすることなく,バックドア攻撃であるかどうかを推定するリバースエンジニアリングディフェンスを提案する。
本研究の有効性を,PC用ベンチマークModeNet40データセットで実証した。
- 参考スコア(独自算出の注目度): 34.14971037420606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks (BA) are an emerging threat to deep neural network
classifiers. A classifier being attacked will predict to the attacker's target
class when a test sample from a source class is embedded with the backdoor
pattern (BP). Recently, the first BA against point cloud (PC) classifiers was
proposed, creating new threats to many important applications including
autonomous driving. Such PC BAs are not detectable by existing BA defenses due
to their special BP embedding mechanism. In this paper, we propose a
reverse-engineering defense that infers whether a PC classifier is backdoor
attacked, without access to its training set or to any clean classifiers for
reference. The effectiveness of our defense is demonstrated on the benchmark
ModeNet40 dataset for PCs.
- Abstract(参考訳): バックドア攻撃(ba)はディープニューラルネットワーク分類器に対する新たな脅威である。
攻撃対象の分類器は、ソースクラスのテストサンプルがバックドアパターン(bp)に埋め込まれている場合、攻撃者のターゲットクラスに予測される。
近年、ポイントクラウド(PC)分類器に対する最初のBAが提案され、自律運転を含む多くの重要なアプリケーションに対する新たな脅威が生まれた。
このようなPC BAは、独自のBP埋め込み機構のため、既存のBAディフェンスでは検出できない。
本稿では,PC分類器がトレーニングセットへのアクセスや参照のためのクリーン分類器にアクセスできることなく,バックドア攻撃か否かを推測するリバースエンジニアリングディフェンスを提案する。
本研究の有効性を,PC用ベンチマークModeNet40データセットで実証した。
関連論文リスト
- Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Invisible Backdoor Attack with Dynamic Triggers against Person
Re-identification [71.80885227961015]
個人再識別(ReID)は、広範囲の現実世界のアプリケーションで急速に進展しているが、敵攻撃の重大なリスクも生じている。
動的トリガー・インビジブル・バックドア・アタック(DT-IBA)と呼ばれる,ReIDに対する新たなバックドア・アタックを提案する。
本研究は,提案したベンチマークデータセットに対する攻撃の有効性と盗聴性を広範囲に検証し,攻撃に対する防御手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-11-20T10:08:28Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Detecting Backdoors in Deep Text Classifiers [43.36440869257781]
本稿では,テキスト分類モデルに対するバックドア攻撃を一般化する,最初の堅牢な防御機構を提案する。
我々の技術は、データ中毒や重毒など、最先端のバックドア攻撃に対する防御に極めて正確です。
論文 参考訳(メタデータ) (2022-10-11T07:48:03Z) - MM-BD: Post-Training Detection of Backdoor Attacks with Arbitrary
Backdoor Pattern Types Using a Maximum Margin Statistic [27.62279831135902]
本稿では,任意の種類のバックドア埋め込みによるバックドア攻撃を検出するポストトレーニングディフェンスを提案する。
我々の検出器は正当なクリーンなサンプルを一切必要とせず、任意の数のソースクラスでバックドア攻撃を効率的に検出することができる。
論文 参考訳(メタデータ) (2022-05-13T21:32:24Z) - Backdoor Attack against NLP models with Robustness-Aware Perturbation
defense [0.0]
バックドア攻撃はディープニューラルネットワーク(DNN)に隠れたバックドアを埋め込む
本研究は, 有害試料とクリーン試料との堅牢性ギャップを, 敵の訓練工程を用いて制御することにより, この防御を破るものである。
論文 参考訳(メタデータ) (2022-04-08T10:08:07Z) - Post-Training Detection of Backdoor Attacks for Two-Class and
Multi-Attack Scenarios [22.22337220509128]
バックドア攻撃(BA)は、ディープニューラルネットワーク分類器に対する新たな脅威である。
本稿では,BPリバースエンジニアリングに基づく検出フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-20T22:21:38Z) - Test-Time Detection of Backdoor Triggers for Poisoned Deep Neural
Networks [24.532269628999025]
深層ニューラルネットワーク(DNN)に対するバックドア(トロイの木馬)攻撃が出現
本稿では,画像分類に対するバックドア攻撃に対する「飛行中」防御法を提案する。
論文 参考訳(メタデータ) (2021-12-06T20:52:00Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Backdoor Learning: A Survey [75.59571756777342]
バックドア攻撃はディープニューラルネットワーク(DNN)に隠れたバックドアを埋め込む
バックドア学習は、急速に成長する研究分野である。
本稿では,この領域を包括的に調査する。
論文 参考訳(メタデータ) (2020-07-17T04:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。