論文の概要: Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor
- arxiv url: http://arxiv.org/abs/2405.16112v2
- Date: Tue, 15 Oct 2024 15:30:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:58:52.267271
- Title: Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor
- Title(参考訳): アクティブ・ディフェンシブ・バックドア注入によるバックドア攻撃の軽減
- Authors: Shaokui Wei, Hongyuan Zha, Baoyuan Wu,
- Abstract要約: データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
- 参考スコア(独自算出の注目度): 63.84477483795964
- License:
- Abstract: Data-poisoning backdoor attacks are serious security threats to machine learning models, where an adversary can manipulate the training dataset to inject backdoors into models. In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned. Unlike most existing methods that primarily detect and remove/unlearn suspicious samples to mitigate malicious backdoor attacks, we propose a novel defense approach called PDB (Proactive Defensive Backdoor). Specifically, PDB leverages the home-field advantage of defenders by proactively injecting a defensive backdoor into the model during training. Taking advantage of controlling the training process, the defensive backdoor is designed to suppress the malicious backdoor effectively while remaining secret to attackers. In addition, we introduce a reversible mapping to determine the defensive target label. During inference, PDB embeds a defensive trigger in the inputs and reverses the model's prediction, suppressing malicious backdoor and ensuring the model's utility on the original task. Experimental results across various datasets and models demonstrate that our approach achieves state-of-the-art defense performance against a wide range of backdoor attacks. The code is available at https://github.com/shawkui/Proactive_Defensive_Backdoor.
- Abstract(参考訳): データ消去バックドア攻撃は、機械学習モデルに対する深刻なセキュリティ上の脅威であり、敵はトレーニングデータセットを操作してモデルにバックドアを注入することができる。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor,プロアクティブディフェンシブ・バックドア)と呼ばれる新たな防御手法を提案する。
具体的には、PDBは、トレーニング中に防衛バックドアを積極的にモデルに注入することで、ディフェンダーのホームフィールド優位性を活用する。
訓練プロセスの制御の利点を生かして、防御バックドアは攻撃者に秘密を保ちながら、悪意のあるバックドアを効果的に抑えるように設計されている。
さらに,防衛目標ラベルを決定するために可逆写像を導入する。
推論の間、PDBは入力に防御的なトリガーを埋め込み、モデルの予測を逆転させ、悪意のあるバックドアを抑圧し、モデルの本来のタスクにおける実用性を保証する。
様々なデータセットやモデルにまたがる実験結果から,我々の手法は,幅広いバックドア攻撃に対する最先端の防御性能を達成できることが示されている。
コードはhttps://github.com/shawkui/Proactive_Defensive_Backdoorで公開されている。
関連論文リスト
- Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models [68.40324627475499]
本稿では,Expose Before You Defendという新しい2段階防衛フレームワークを紹介する。
EBYDは既存のバックドア防御手法を総合防衛システムに統合し、性能を向上する。
2つの視覚データセットと4つの言語データセットにまたがる10のイメージアタックと6つのテキストアタックに関する広範な実験を行います。
論文 参考訳(メタデータ) (2024-10-25T09:36:04Z) - Breaking the False Sense of Security in Backdoor Defense through Re-Activation Attack [32.74007523929888]
防衛後のバックドアモデルの特徴を再検討する。
既存の訓練後防衛戦略から派生した防衛モデルには,元のバックドアが現存していることが判明した。
我々は,これらの休眠バックドアを推論中に簡単に再活性化できることを実証的に示す。
論文 参考訳(メタデータ) (2024-05-25T08:57:30Z) - BaDExpert: Extracting Backdoor Functionality for Accurate Backdoor Input
Detection [42.021282816470794]
我々は,Deep Neural Networks(DNN)に対するバックドア攻撃に対する新しい防御法を提案する。
私たちの防衛は、モデルの生成方法とは独立して機能する開発後防衛のカテゴリに分類されます。
モデル推論におけるバックドア入力をフィルタリングする高精度なバックドア入力検出装置の実現可能性を示す。
論文 参考訳(メタデータ) (2023-08-23T21:47:06Z) - Beating Backdoor Attack at Its Own Game [10.131734154410763]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
既存の防御方法は、攻撃の成功率を大幅に低下させた。
有害な試料を標的とした非敵のバックドアを注入する高効率な枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-28T13:07:42Z) - Rethinking Backdoor Attacks [122.1008188058615]
バックドア攻撃では、悪意ある構築されたバックドアの例をトレーニングセットに挿入し、結果のモデルを操作に脆弱にする。
このような攻撃に対する防御は、典型的には、これらの挿入された例をトレーニングセットの外れ値として見ることと、堅牢な統計からのテクニックを使用してそれらを検出し、削除することである。
トレーニングデータ分布に関する構造情報がなければ,バックドア攻撃は自然に発生するデータの特徴と区別できないことを示す。
論文 参考訳(メタデータ) (2023-07-19T17:44:54Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアの敵は、敵が特定したトリガーパターンによって活性化される隠れたバックドアを注入する。
最近の研究によると、既存の攻撃のほとんどは現実世界で失敗した。
論文 参考訳(メタデータ) (2022-11-02T16:03:43Z) - Backdoor Attack against NLP models with Robustness-Aware Perturbation
defense [0.0]
バックドア攻撃はディープニューラルネットワーク(DNN)に隠れたバックドアを埋め込む
本研究は, 有害試料とクリーン試料との堅牢性ギャップを, 敵の訓練工程を用いて制御することにより, この防御を破るものである。
論文 参考訳(メタデータ) (2022-04-08T10:08:07Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。