Detecting Backdoor Attacks Against Point Cloud Classifiers
- URL: http://arxiv.org/abs/2110.10354v1
- Date: Wed, 20 Oct 2021 03:12:06 GMT
- Title: Detecting Backdoor Attacks Against Point Cloud Classifiers
- Authors: Zhen Xiang, David J. Miller, Siheng Chen, Xi Li and George Kesidis
- Abstract summary: First BA against point cloud (PC) classifiers was proposed, creating new threats to many important applications including autonomous driving.
In this paper, we propose a reverse-engineering defense that infers whether a PC classifier is backdoor attacked, without access to its training set.
The effectiveness of our defense is demonstrated on the benchmark ModeNet40 dataset for PCs.
- Score: 34.14971037420606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks (BA) are an emerging threat to deep neural network
classifiers. A classifier being attacked will predict to the attacker's target
class when a test sample from a source class is embedded with the backdoor
pattern (BP). Recently, the first BA against point cloud (PC) classifiers was
proposed, creating new threats to many important applications including
autonomous driving. Such PC BAs are not detectable by existing BA defenses due
to their special BP embedding mechanism. In this paper, we propose a
reverse-engineering defense that infers whether a PC classifier is backdoor
attacked, without access to its training set or to any clean classifiers for
reference. The effectiveness of our defense is demonstrated on the benchmark
ModeNet40 dataset for PCs.
Related papers
- Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
Data-poisoning backdoor attacks are serious security threats to machine learning models.
In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned.
We propose a novel defense approach called PDB (Proactive Defensive Backdoor)
arXiv Detail & Related papers (2024-05-25T07:52:26Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Invisible Backdoor Attack with Dynamic Triggers against Person
Re-identification [71.80885227961015]
Person Re-identification (ReID) has rapidly progressed with wide real-world applications, but also poses significant risks of adversarial attacks.
We propose a novel backdoor attack on ReID under a new all-to-unknown scenario, called Dynamic Triggers Invisible Backdoor Attack (DT-IBA)
We extensively validate the effectiveness and stealthiness of the proposed attack on benchmark datasets, and evaluate the effectiveness of several defense methods against our attack.
arXiv Detail & Related papers (2022-11-20T10:08:28Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Detecting Backdoors in Deep Text Classifiers [43.36440869257781]
We present the first robust defence mechanism that generalizes to several backdoor attacks against text classification models.
Our technique is highly accurate at defending against state-of-the-art backdoor attacks, including data poisoning and weight poisoning.
arXiv Detail & Related papers (2022-10-11T07:48:03Z) - MM-BD: Post-Training Detection of Backdoor Attacks with Arbitrary
Backdoor Pattern Types Using a Maximum Margin Statistic [27.62279831135902]
We propose a post-training defense that detects backdoor attacks with arbitrary types of backdoor embeddings.
Our detector does not need any legitimate clean samples, and can efficiently detect backdoor attacks with arbitrary numbers of source classes.
arXiv Detail & Related papers (2022-05-13T21:32:24Z) - Backdoor Attack against NLP models with Robustness-Aware Perturbation
defense [0.0]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
In our work, we break this defense by controlling the robustness gap between poisoned and clean samples using adversarial training step.
arXiv Detail & Related papers (2022-04-08T10:08:07Z) - Post-Training Detection of Backdoor Attacks for Two-Class and
Multi-Attack Scenarios [22.22337220509128]
Backdoor attacks (BAs) are an emerging threat to deep neural network classifiers.
We propose a detection framework based on BP reverse-engineering and a novel it expected transferability (ET) statistic.
arXiv Detail & Related papers (2022-01-20T22:21:38Z) - Test-Time Detection of Backdoor Triggers for Poisoned Deep Neural
Networks [24.532269628999025]
Backdoor (Trojan) attacks are emerging threats against deep neural networks (DNN)
In this paper, we propose an "in-flight" defense against backdoor attacks on image classification.
arXiv Detail & Related papers (2021-12-06T20:52:00Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.