Different Applications and Technologies of Internet of Things (IoT)
- URL: http://arxiv.org/abs/2110.10452v2
- Date: Sat, 26 Feb 2022 03:16:32 GMT
- Title: Different Applications and Technologies of Internet of Things (IoT)
- Authors: Feisal Masmali, Shah J. Miah, Nasimul Noman
- Abstract summary: Internet of things (IoT) has significantly altered the traditional lifestyle to a technologically advanced society.
This research paper addresses the key applications of IoT, the architecture of IoT, and the key issues affecting IoT.
- Score: 1.1602089225841632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet of things (IoT) has significantly altered the traditional lifestyle
to a highly technologically advanced society. Some of the significant
transformations that have been achieved through IoT are smart homes, smart
transportation, smart city, and control of pollution. A considerable number of
studies have been conducted and continue to be done to increase the use of
technology through IoT. Furthermore, the research about IoT has not been done
fully in improving the application of technology through IoT. Besides, IoT
experiences several problems that need to be considered in order to get the
full capability of IoT in changing society. This research paper addresses the
key applications of IoT, the architecture of IoT, and the key issues affecting
IoT. In addition, the paper highlights how big data analytics is essential in
improving the effectiveness of IoT in various applications within society.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Revisiting the Internet of Things: New Trends, Opportunities and Grand
Challenges [16.938280428208685]
The Internet of Things (IoT) embeds sensors and actuators in physical objects so that they can communicate and exchange data between themselves.
The number of deployed IoT devices has rapidly grown in the past five years in a way that makes IoT the most disruptive technology in recent history.
The paper also highlights the role of artificial intelligence to make IoT the top transformative technology that has been ever developed in human history.
arXiv Detail & Related papers (2022-11-14T16:43:02Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - The Internet of People: A Survey and Tutorial [10.269536837165347]
The Internet of People (IoP) has been emerging as a novel paradigm which establishes ubiquitous connections between social space and cyberspace.
Unlike the Internet of Things (IoT), human nodes in IoP are not only terminal users, but also significant participants bonded with tighter relationships.
This paper gives a comprehensive overview of IoP by comparing it with IoT, introduce its enabling techniques from aspects of sensing, communication and application.
arXiv Detail & Related papers (2021-04-06T12:56:25Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z) - Machine Learning Based Solutions for Security of Internet of Things
(IoT): A Survey [8.108571247838206]
IoT platforms have been developed into a global giant that grabs every aspect of our daily lives by advancing human life with its unaccountable smart services.
There are existing security measures that can be applied to protect IoT.
Traditional techniques are not as efficient with the advancement booms as well as different attack types and their severeness.
A huge technological advancement has been noticed in Machine Learning (ML) which has opened many possible research windows to address ongoing and future challenges in IoT.
arXiv Detail & Related papers (2020-04-11T03:08:24Z) - Personalized Federated Learning for Intelligent IoT Applications: A
Cloud-Edge based Framework [12.199870302894439]
Internet of Things (IoT) have widely penetrated in different aspects of modern life.
In this article we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications.
arXiv Detail & Related papers (2020-02-25T05:11:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.