論文の概要: Transferring Reinforcement Learning for DC-DC Buck Converter Control via
Duty Ratio Mapping: From Simulation to Implementation
- arxiv url: http://arxiv.org/abs/2110.10490v1
- Date: Wed, 20 Oct 2021 11:08:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 18:43:57.152122
- Title: Transferring Reinforcement Learning for DC-DC Buck Converter Control via
Duty Ratio Mapping: From Simulation to Implementation
- Title(参考訳): デューティ比マッピングによるdc-dc buckコンバータ制御の強化学習:シミュレーションから実装へ
- Authors: Chenggang Cui, Tianxiao Yang, Yuxuan Dai, Chuanlin Zhang
- Abstract要約: 本稿では,DC-DCコンバータ用のデリケートに設計されたデューティ比マッピング(DRM)を用いた転送手法を提案する。
モデルフリー深部強化学習(DRL)コントローラの実装を可能にするために,詳細なsim-to-realプロセスを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement learning (RL) control approach with application into power
electronics systems has become an emerging topic whilst the sim-to-real issue
remains a challenging problem as very few results can be referred to in the
literature. Indeed, due to the inevitable mismatch between simulation models
and real-life systems, offline trained RL control strategies may sustain
unexpected hurdles in practical implementation during transferring procedure.
As the main contribution of this paper, a transferring methodology via a
delicately designed duty ratio mapping (DRM) is proposed for a DC-DC buck
converter. Then, a detailed sim-to-real process is presented to enable the
implementation of a model-free deep reinforcement learning (DRL) controller.
The feasibility and effectiveness of the proposed methodology are demonstrated
by comparative experimental studies.
- Abstract(参考訳): 電力エレクトロニクスシステムへの応用による強化学習(RL)制御アプローチは新たな話題となっているが、シム・トゥ・リアル問題はまだ問題であり、文献にはほとんど言及できない。
実際、シミュレーションモデルと実生活システムとの必然的なミスマッチのため、オフラインで訓練されたRL制御戦略は、転送手順の実践において予期せぬハードルを負う可能性がある。
本論文の主な貢献として,DC-DCバックコンバータにおいて,デリケートに設計されたデューティ比マッピング(DRM)を用いた転送手法を提案する。
そして、モデルフリー深部強化学習(DRL)コントローラの実装を可能にするために、詳細なsim-to-realプロセスを示す。
提案手法の有効性と有効性は比較実験により実証された。
関連論文リスト
- Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
本稿では,最大エントロピー深層強化学習フレームワークを古典的なモデルベース制御アーキテクチャと組み合わせ,適応制御系を定式化する新しい手法を提案する。
本フレームワークでは,バイオインスパイアされた体験再生機構,拡張されたドメインランダム化手法,物理プラットフォーム上で実行される評価プロトコルなどを含むSim-to-Real転送戦略を導入する。
実験により,AUVの準最適モデルから有能なポリシを効果的に学習し,実車への移動時の制御性能を3倍に向上することを示した。
論文 参考訳(メタデータ) (2023-10-17T08:46:56Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
本稿では,意思決定問題における変換器の文脈内学習能力について検討する。
本稿では,変換器が最適動作を予測する教師付き事前学習法であるDPT(Decision-Pretrained Transformer)を導入,研究する。
事前学習した変換器は、オンラインと保守主義の両方をオフラインで探索することで、コンテキスト内における様々なRL問題の解決に利用できる。
論文 参考訳(メタデータ) (2023-06-26T17:58:50Z) - Model-based adaptation for sample efficient transfer in reinforcement
learning control of parameter-varying systems [1.8799681615947088]
我々はモデルに基づく制御のアイデアを活用し、強化学習アルゴリズムのサンプル効率問題に対処する。
また,本手法は強化学習のみでの微調整よりもサンプリング効率が高いことを示した。
論文 参考訳(メタデータ) (2023-05-20T10:11:09Z) - Efficient Learning of Voltage Control Strategies via Model-based Deep
Reinforcement Learning [9.936452412191326]
本稿では,電力系統の短期電圧安定性問題に対する緊急制御戦略を設計するためのモデルベース深部強化学習(DRL)手法を提案する。
近年, モデルフリーDRL方式の電力系統への適用が期待できるが, モデルフリー方式はサンプル効率の低下と訓練時間に悩まされている。
本稿では,Deep Neural Network(DNN)に基づく動的代理モデルを用いた新しいモデルベースDRLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-06T02:50:53Z) - Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP [62.81300791178381]
無線による分散エッジ学習のボトルネックは、コンピューティングから通信へと移行した。
DEL用の既存のTCPベースのデータネットワークスキームは、アプリケーションに依存しず、アプリケーション層要求に応じて調整を施さない。
DELのためのモデルベースと深部強化学習(DRL)に基づくMP TCPを組み合わせたハイブリッドマルチパスTCP(MP TCP)を開発した。
論文 参考訳(メタデータ) (2022-11-03T09:08:30Z) - Model Predictive Control via On-Policy Imitation Learning [28.96122879515294]
我々は,データ駆動型モデル予測制御のための新しいサンプル複雑性結果と性能保証を開発する。
我々のアルゴリズムは制約付き線形MPCの構造を用いており、解析は明示的なMPC解の特性を用いて、最適性能を達成するのに必要なオンラインMPCトラジェクトリの数を理論的に制限する。
論文 参考訳(メタデータ) (2022-10-17T16:06:06Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
モデルが不正確または偏りがある場合、虚構軌跡はアクション値とポリシー関数を訓練するために欠落する可能性がある。
虚構遷移を適応的に再重み付けし, 未生成軌跡の負の効果を低減させる。
提案手法は,複数のタスクにおいて,最先端のモデルベースおよびモデルフリーなRLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2021-04-09T03:13:35Z) - Continuous Transition: Improving Sample Efficiency for Continuous
Control Problems via MixUp [119.69304125647785]
本稿では,連続的遷移を構築するための簡潔かつ強力な手法を提案する。
具体的には、連続的な遷移を線形に補間することにより、トレーニングのための新しい遷移を合成することを提案する。
また, 建設過程を自動案内する判別器を開発した。
論文 参考訳(メタデータ) (2020-11-30T01:20:23Z) - Data-Driven Learning and Load Ensemble Control [1.647866856596524]
本研究の目的は、グリッドサポートサービスを提供するために、温度制御可能な負荷(TCL)など、分散された小規模のフレキシブルな負荷に取り組むことである。
このデータ駆動学習の効率性は, 住宅のテストベッド地区における暖房, 冷却, 換気ユニットのシミュレーションによって実証される。
論文 参考訳(メタデータ) (2020-04-20T23:32:10Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。