論文の概要: BEYONDWORDS is All You Need: Agentic Generative AI based Social Media Themes Extractor
- arxiv url: http://arxiv.org/abs/2503.01880v1
- Date: Wed, 26 Feb 2025 18:18:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:16.609754
- Title: BEYONDWORDS is All You Need: Agentic Generative AI based Social Media Themes Extractor
- Title(参考訳): エージェント生成AIベースのソーシャルメディアテーマエクストラクタ「BeYONDWORDS」
- Authors: Mohammed-Khalil Ghali, Abdelrahman Farrag, Sarah Lam, Daehan Won,
- Abstract要約: ソーシャルメディア投稿のテーマ分析は、公開談話に対する大きな理解を提供する。
従来の手法は、構造化されていない大規模なテキストデータの複雑さとニュアンスを捉えるのに苦労することが多い。
本研究では,事前学習した言語モデルからツイートの埋め込みを統合したテーマ分析のための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.699900017799093
- License:
- Abstract: Thematic analysis of social media posts provides a major understanding of public discourse, yet traditional methods often struggle to capture the complexity and nuance of unstructured, large-scale text data. This study introduces a novel methodology for thematic analysis that integrates tweet embeddings from pre-trained language models, dimensionality reduction using and matrix factorization, and generative AI to identify and refine latent themes. Our approach clusters compressed tweet representations and employs generative AI to extract and articulate themes through an agentic Chain of Thought (CoT) prompting, with a secondary LLM for quality assurance. This methodology is applied to tweets from the autistic community, a group that increasingly uses social media to discuss their experiences and challenges. By automating the thematic extraction process, the aim is to uncover key insights while maintaining the richness of the original discourse. This autism case study demonstrates the utility of the proposed approach in improving thematic analysis of social media data, offering a scalable and adaptable framework that can be applied to diverse contexts. The results highlight the potential of combining machine learning and Generative AI to enhance the depth and accuracy of theme identification in online communities.
- Abstract(参考訳): ソーシャルメディア投稿のテーマ分析は、公開談話に関する大きな理解を提供するが、伝統的な手法は、構造化されていない大規模テキストデータの複雑さとニュアンスを捉えるのにしばしば苦労する。
本研究では,事前学習された言語モデルからのつぶやき埋め込み,行列分解を用いた次元削減,潜在テーマの同定と洗練のための生成AIを取り入れたテーマ解析のための新しい手法を提案する。
我々のアプローチでは、ツイート表現を圧縮し、生成AIを用いて思考のエージェントチェーン(CoT)のプロンプトを通じて、品質保証のための二次LLMを用いてテーマを抽出し、調音する。
この手法は、ソーシャルメディアを使って彼らの経験や課題について議論するグループである自閉症コミュニティからのツイートに適用される。
テーマ抽出プロセスの自動化により、本来の言説の豊かさを維持しつつ、重要な洞察を明らかにすることが目的である。
この自閉症ケーススタディは、ソーシャルメディアデータのテーマ分析を改善するための提案手法の有用性を実証し、多様な文脈に適用可能なスケーラブルで適応可能なフレームワークを提供する。
この結果は、オンラインコミュニティにおけるテーマ識別の深さと精度を高めるために、機械学習と生成AIを組み合わせる可能性を強調している。
関連論文リスト
- SCALE: Towards Collaborative Content Analysis in Social Science with Large Language Model Agents and Human Intervention [50.07342730395946]
我々は、効果的に機能する新しいマルチエージェントフレームワークを導入する。
Imulates $underlinetextbfC$ontent $underlinetextbfA$nalysis via。
underlinetextbfL$arge language model (LLM) agunderlinetextbfE$nts。
テキストコーディング、協調的な議論、動的コードブックの進化など、コンテンツ分析の重要なフェーズを模倣します。
論文 参考訳(メタデータ) (2025-02-16T00:19:07Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - Y Social: an LLM-powered Social Media Digital Twin [0.3932300766934226]
われわれは、オンラインソーシャルメディアプラットフォームを再現するために設計された次世代デジタルツインYを紹介する。
Yはユーザエンゲージメント、情報拡散、プラットフォームポリシーの影響に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-08-01T17:16:21Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Modes of Analyzing Disinformation Narratives With AI/ML/Text Mining to Assist in Mitigating the Weaponization of Social Media [0.8287206589886879]
本稿では,ソーシャルメディアにおける悪意あるコミュニケーションを捕捉・監視するための定量的モードの必要性を明らかにする。
ソーシャル・ネットワークを利用したメッセージの「ウェポン化」が意図的に行われており、州が後援し、私的に運営される政治的指向のエンティティも含む。
FacebookやX/Twitterのような主要プラットフォームにモデレーションを導入しようとする試みにもかかわらず、完全にモデレートされていないスペースを提供する代替ソーシャルネットワークが現在確立されている。
論文 参考訳(メタデータ) (2024-05-25T00:02:14Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
この包括的調査は、HSモデレーションの最近の歩みを掘り下げている。
大型言語モデル(LLM)と大規模マルチモーダルモデル(LMM)の急成長する役割を強調した。
研究における既存のギャップを、特に表現不足言語や文化の文脈で特定する。
論文 参考訳(メタデータ) (2024-01-30T03:51:44Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Structured Like a Language Model: Analysing AI as an Automated Subject [0.0]
我々は、大規模言語モデルに対する主観性の意図的な予測は、AIの振る舞いを分析できる別のフレームを生み出すことができると論じる。
我々は、最先端の自然言語処理性能を実現するシステムのリリースにおいて、言語モデルに関する短い歴史を辿る。
批判的メディア手法と精神分析理論が組み合わさって、AI駆動型言語システムの強力な新しい能力を把握するための生産的枠組みを提供すると結論付けている。
論文 参考訳(メタデータ) (2022-12-08T21:58:43Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
著者らは新メディアにおける利用者の相互影響の可能性を検討した。
新型コロナウイルス(COVID-19)対策として、緊急の社会問題について議論する際、攻撃やヘイトスピーチのレベルが高いことが分かった。
結果は、現代のデジタル環境におけるメディアコンテンツの開発に有用である。
論文 参考訳(メタデータ) (2022-08-25T15:53:32Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。