論文の概要: Efficient Decoding of Surface Code Syndromes for Error Correction in
Quantum Computing
- arxiv url: http://arxiv.org/abs/2110.10896v1
- Date: Thu, 21 Oct 2021 04:54:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 21:58:38.753961
- Title: Efficient Decoding of Surface Code Syndromes for Error Correction in
Quantum Computing
- Title(参考訳): 量子コンピューティングにおける誤り訂正のための表面符号シンドロームの効率的な復号化
- Authors: Debasmita Bhoumik, Pinaki Sen, Ritajit Majumdar, Susmita Sur-Kolay,
Latesh Kumar K J, and Sundaraja Sitharama Iyengar
- Abstract要約: 本稿では,2レベル(低レベル,高レベル)のMLベースの復号法を提案し,第1レベルが物理量子ビット上の誤りを訂正し,第2レベルが既存の論理的誤りを訂正する。
その結果,提案手法は擬似閾値としきい値のそれぞれ$sim10倍,$sim2倍の値が得られることがわかった。
より高度な訓練/テスト時間を持つMLモデルの使用は、デコーダの性能に大きな改善をもたらすものではないことを示す。
- 参考スコア(独自算出の注目度): 0.09236074230806578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Errors in surface code have typically been decoded by Minimum Weight Perfect
Matching (MWPM) based method. Recently, neural-network-based Machine Learning
(ML) techniques have been employed for this purpose. Here we propose a
two-level (low and high) ML-based decoding scheme, where the first level
corrects errors on physical qubits and the second one corrects any existing
logical errors, for different noise models. Our results show that our proposed
decoding method achieves $\sim10 \times$ and $\sim2 \times$ higher values of
pseudo-threshold and threshold respectively, than for MWPM. We show that usage
of more sophisticated ML models with higher training/testing time, do not
provide significant improvement in the decoder performance. Finally, data
generation for training the ML decoder requires significant overhead hence
lower volume of training data is desirable. We have shown that our decoder
maintains a good performance with the train-test-ratio as low as $40:60$.
- Abstract(参考訳): 表面符号の誤差は通常、MWPM (Minimum Weight Perfect Matching) ベースの方法で復号される。
近年,ニューラルネットワークに基づく機械学習(ML)技術が採用されている。
本稿では,2レベル(低・高)mlに基づく復号方式を提案する。1レベルは物理量子ビットの誤りを,もう1レベルは既存の論理エラーを異なるノイズモデルで訂正する。
提案手法は,MWPMよりも,擬似閾値と閾値の値が高い$\sim10 \times$と$\sim2 \times$を達成することを示す。
より高度な訓練/テスト時間を持つMLモデルの使用はデコーダ性能に大きな改善をもたらすものではないことを示す。
最後に、MLデコーダをトレーニングするためのデータ生成にはかなりのオーバーヘッドが必要であるため、トレーニングデータの少ないボリュームが望ましい。
当社のデコーダは40:60$という低いトレインテスト比で優れたパフォーマンスを維持しています。
関連論文リスト
- Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
並列ビットフリップデコーダのDFRを高精度に推定する手法を提案する。
本研究は,本症候群のモデル化およびシミュレーションによる重み比較,第1イテレーション終了時の誤りビット分布の誤検出,復号化復号化率(DFR)について検証した。
論文 参考訳(メタデータ) (2024-01-30T11:40:24Z) - Boosting Learning for LDPC Codes to Improve the Error-Floor Performance [16.297253625958174]
本稿では,ニューラルミンサムデコーダ(NMS)のトレーニング手法を提案する。
異なる重み付けを不満足なチェックノードに割り当てることで、最小限の重み付けでエラーフロアを効果的に低減できることを示す。
提案したNMSデコーダは、余分なハードウェアコストを発生させることなく、既存のLDPCデコーダに統合することができる。
論文 参考訳(メタデータ) (2023-10-11T05:05:40Z) - Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model [77.19693792957614]
そこで我々は,ニューラルネットワーク翻訳(NMT)モデルを用いて,その品質を学習し,その品質を推定する手法を提案する。
我々は、単一パスの復号化の効率性よりも、品質向上や品質改善のアプローチよりも優れた品質向上を得る。
論文 参考訳(メタデータ) (2023-10-10T15:33:51Z) - Data-driven decoding of quantum error correcting codes using graph
neural networks [0.0]
グラフニューラルネットワーク(GNN)を用いたモデルフリーでデータ駆動型デコーディングアプローチについて検討する。
GNNベースのデコーダは、シミュレーションデータのみを与えられた表面コード上での回路レベルのノイズに対する整合デコーダよりも優れていることを示す。
その結果、デコードに対する純粋にデータ駆動型アプローチが、実用的な量子誤り訂正のための実行可能な選択肢である可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-03T17:25:45Z) - A Scalable, Fast and Programmable Neural Decoder for Fault-Tolerant
Quantum Computation Using Surface Codes [12.687083899824314]
量子誤り訂正符号(Quantum error-correcting codes, QECCs)は、量子アルゴリズムの実行の大きな障害である量子ノイズの負の効果を排除できる。
回転曲面符号(RSC)に対するFTQECの要件を満たすスケーラブルで高速でプログラム可能なニューラルデコーディングシステムを提案する。
本システムでは,197 nsのデコード遅延を極端に低くし,その精度はMWPMに近い。
論文 参考訳(メタデータ) (2023-05-25T06:23:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
本稿では,タスク固有のデコーダネットワークを出力側で最適化するデコーダチューニング(DecT)を提案する。
勾配ベースの最適化により、DecTは数秒以内にトレーニングでき、サンプル毎に1つのPクエリしか必要としない。
我々は、広範囲にわたる自然言語理解実験を行い、DecTが200ドル以上のスピードアップで最先端のアルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-12-16T11:15:39Z) - Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning [1.1156329459915602]
近年の進歩により、トポロジカルコードは機械学習(ML)技術の展開によって効率的に復号化可能であることが示されている。
まず、ヘキサゴナルコードのためのMLベースのデコーダを提案し、しきい値と擬似閾値の値でその効率性を確立する。
等価なエラークラスを決定するランクに基づく新しい手法が提案され、線形探索に基づくクラスよりも経験的に高速である。
論文 参考訳(メタデータ) (2022-10-18T10:16:14Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Deep Q-learning decoder for depolarizing noise on the toric code [0.0]
トーリック符号上の非分極雑音の量子誤差補正のためのAIベースの復号化エージェントを提案する。
エージェントは、深層強化学習(DRL)を使用してトレーニングされ、人工知能ニューラルネットワークは、エラー修正のための$X$、$Y$、および$Z$ Pauli操作の状態をQ値にエンコードする。
DRL型デコーダは,将来的なトポロジカル符号の誤り訂正のためのフレームワークとして期待できる。
論文 参考訳(メタデータ) (2019-12-30T13:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。