Autonomous Dimension Reduction by Flattening Deformation of Data
Manifold under an Intrinsic Deforming Field
- URL: http://arxiv.org/abs/2110.10938v1
- Date: Thu, 21 Oct 2021 07:20:23 GMT
- Title: Autonomous Dimension Reduction by Flattening Deformation of Data
Manifold under an Intrinsic Deforming Field
- Authors: Xiaodong Zhuang
- Abstract summary: A new dimension reduction (DR) method for data sets is proposed by autonomous deforming of data manifold.
The flattening of data manifold is achieved as an emergent behavior under the elastic and repelling interactions between data points.
The proposed method provides a novel geometric viewpoint on dimension reduction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A new dimension reduction (DR) method for data sets is proposed by autonomous
deforming of data manifolds. The deformation is guided by the proposed
deforming vector field, which is defined by two kinds of virtual interactions
between data points. The flattening of data manifold is achieved as an emergent
behavior under the elastic and repelling interactions between data points,
meanwhile the topological structure of the manifold is preserved. To overcome
the uneven sampling (or "short-cut edge") problem, the soft neighborhood is
proposed, in which the neighbor degree is defined and adaptive interactions
between neighbor points is implemented. The proposed method provides a novel
geometric viewpoint on dimension reduction. Experimental results prove the
effectiveness of the proposed method in dimension reduction, and implicit
feature of data sets may also be revealed.
Related papers
- Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for non-rigid shapes.
We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets.
arXiv Detail & Related papers (2023-08-16T14:25:30Z) - Multi-Linear Kernel Regression and Imputation in Data Manifolds [12.15802365851407]
This paper introduces an efficient multi-linear nonparametric approximation framework for data regression and imputation, and its application to dynamic magnetic-resonance imaging (dMRI)
Data features are assumed to reside in or close to a smooth manifold embedded in a kernel reproducing Hilbert space. Landmark points are identified to describe the point cloud of features by linear approximating patches which mimic the concept of tangent spaces to smooth.
The multi-linear model effects dimensionality reduction, enables efficient computations, and extracts data patterns and their geometry without any training data or additional information.
arXiv Detail & Related papers (2023-04-06T12:58:52Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
We show how the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
We also show how using the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
arXiv Detail & Related papers (2022-09-21T18:14:38Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Joint Dimensionality Reduction for Separable Embedding Estimation [43.22422640265388]
Low-dimensional embeddings for data from disparate sources play critical roles in machine learning, multimedia information retrieval, and bioinformatics.
We propose a supervised dimensionality reduction method that learns linear embeddings jointly for two feature vectors representing data of different modalities or data from distinct types of entities.
Our approach compares favorably against other dimensionality reduction methods, and against a state-of-the-art method of bilinear regression for predicting gene-disease associations.
arXiv Detail & Related papers (2021-01-14T08:48:37Z) - Manifold Partition Discriminant Analysis [42.11470531267327]
We propose a novel algorithm for supervised dimensionality reduction named Manifold Partition Discriminant Analysis (MPDA)
It aims to find a linear embedding space where the within-class similarity is achieved along the direction that is consistent with the local variation of the data manifold.
MPDA explicitly parameterizes the connections of tangent spaces and represents the data manifold in a piecewise manner.
arXiv Detail & Related papers (2020-11-23T16:33:23Z) - Kernel Two-Dimensional Ridge Regression for Subspace Clustering [45.651770340521786]
We propose a novel subspace clustering method for 2D data.
It directly uses 2D data as inputs such that the learning of representations benefits from inherent structures and relationships of the data.
arXiv Detail & Related papers (2020-11-03T04:52:46Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.