論文の概要: HCV: Hierarchy-Consistency Verification for Incremental
Implicitly-Refined Classification
- arxiv url: http://arxiv.org/abs/2110.11148v2
- Date: Fri, 22 Oct 2021 13:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-25 11:31:30.097055
- Title: HCV: Hierarchy-Consistency Verification for Incremental
Implicitly-Refined Classification
- Title(参考訳): HCV:過度に精細な分類のための階層性検証
- Authors: Kai Wang, Xialei Liu, Luis Herranz, Joost van de Weijer
- Abstract要約: 人間は生涯にわたって階層的な知識を学び蓄積する。
現在の漸進的な学習手法には、新しい概念を古い概念に関連付けることによって概念階層を構築する能力がない。
本稿では,既存の継続学習手法の強化を目的とした階層一貫性検証(HCV)を提案する。
- 参考スコア(独自算出の注目度): 48.68128465443425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human beings learn and accumulate hierarchical knowledge over their lifetime.
This knowledge is associated with previous concepts for consolidation and
hierarchical construction. However, current incremental learning methods lack
the ability to build a concept hierarchy by associating new concepts to old
ones. A more realistic setting tackling this problem is referred to as
Incremental Implicitly-Refined Classification (IIRC), which simulates the
recognition process from coarse-grained categories to fine-grained categories.
To overcome forgetting in this benchmark, we propose Hierarchy-Consistency
Verification (HCV) as an enhancement to existing continual learning methods.
Our method incrementally discovers the hierarchical relations between classes.
We then show how this knowledge can be exploited during both training and
inference. Experiments on three setups of varying difficulty demonstrate that
our HCV module improves performance of existing continual learning methods
under this IIRC setting by a large margin. Code is available in
https://github.com/wangkai930418/HCV_IIRC.
- Abstract(参考訳): 人間は生涯にわたって階層的な知識を学び蓄積する。
この知識は、統合と階層構造に関する以前の概念と関連している。
しかし、現在のインクリメンタル学習手法では、新しい概念を古い概念に関連付けることで、概念階層を構築する能力が欠けている。
この問題に対処するより現実的な設定は、粗粒度カテゴリから細粒度カテゴリへの認識プロセスをシミュレートするIncrmental Implicitly-Refined Classification (IIRC)と呼ばれる。
本ベンチマークでは,既存の継続学習手法の強化を目的とした階層一貫性検証(HCV)を提案する。
本手法はクラス間の階層関係を段階的に発見する。
次に、トレーニングと推論の両方で、この知識をどのように活用できるかを示します。
3種類の難易度実験により,本モジュールは既存の連続学習手法の性能を大きなマージンで改善することを示した。
コードはhttps://github.com/wangkai930418/hcv_iircで入手できる。
関連論文リスト
- Versatile Incremental Learning: Towards Class and Domain-Agnostic Incremental Learning [16.318126586825734]
インクリメンタルラーニング(IL)は、逐次入力タスクから知識を蓄積することを目的としている。
私たちはVersatile Incremental Learning (VIL) という,より挑戦的で現実的で,未探索のILシナリオを考えています。
Incremental with Shift cONtrol (ICON) という,シンプルで効果的なILフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-17T07:44:28Z) - ReconBoost: Boosting Can Achieve Modality Reconcilement [89.4377895465204]
我々は、調和を達成するために、モダリティ代替学習パラダイムについて研究する。
固定モードを毎回更新するReconBoostと呼ばれる新しい手法を提案する。
提案手法はFriedman's Gradient-Boosting (GB) アルゴリズムに似ており,更新された学習者が他者による誤りを訂正できることを示す。
論文 参考訳(メタデータ) (2024-05-15T13:22:39Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
対照的に、CLIP(Contrastive Language- Image Pretraining)はその目覚ましいゼロショット能力で人気を集めている。
近年の研究では、下流タスクにおけるCLIPの性能を高めるための効率的な微調整手法の開発に焦点が当てられている。
従来のアルゴリズムであるガウス判別分析(GDA)を再検討し,CLIPの下流分類に適用する。
論文 参考訳(メタデータ) (2024-02-06T15:45:27Z) - AttriCLIP: A Non-Incremental Learner for Incremental Knowledge Learning [53.32576252950481]
連続学習は、モデルが逐次到着したデータから段階的に知識を学習できるようにすることを目的としている。
本稿では,新しいクラスやタスクの知識を段階的に抽出する,AttriCLIPという非インクリメンタル学習手法を提案する。
論文 参考訳(メタデータ) (2023-05-19T07:39:17Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - Resolving Task Confusion in Dynamic Expansion Architectures for Class
Incremental Learning [27.872317837451977]
タスク間の差別的・公平な特徴利用を促進するために,タスク関連インクリメンタルラーニング(TCIL)を提案する。
TCILは、古いタスクから学んだ知識を新しいタスクに伝達するために、多段階の知識蒸留を行う。
結果は,TILが常に最先端の精度を達成していることを示す。
論文 参考訳(メタデータ) (2022-12-29T12:26:44Z) - Affinity-Based Hierarchical Learning of Dependent Concepts for Human
Activity Recognition [6.187780920448871]
重なり合うクラスを階層化することで、分類性能が大幅に向上することを示す。
これは、SHLデータセットに特徴付けられるアクティビティ認識タスクの場合、特に当てはまります。
学習プロセスの最適階層を決定するために,クラス間の移動親和性に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-11T01:08:48Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
現在の最先端のインクリメンタル学習手法は、従来の分類ネットワークにおける破滅的な忘れ方問題に取り組む。
ゼロショット変換クラス増分法(ZSTCI)と呼ばれる新しい組込みネットワークのクラス増分法を提案する。
さらに、ZSTCIを既存の正規化ベースのインクリメンタル学習手法と組み合わせることで、組み込みネットワークの性能をより向上させることができる。
論文 参考訳(メタデータ) (2020-12-31T08:21:37Z) - Class-incremental Learning with Rectified Feature-Graph Preservation [24.098892115785066]
本論文の中心的なテーマは,逐次的な段階を経る新しいクラスを学習することである。
旧知識保存のための重み付きユークリッド正規化を提案する。
新しいクラスを効果的に学習するために、クラス分離を増やすためにバイナリクロスエントロピーでどのように機能するかを示す。
論文 参考訳(メタデータ) (2020-12-15T07:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。