論文の概要: Neighborhood Commonality-aware Evolution Network for Continuous Generalized Category Discovery
- arxiv url: http://arxiv.org/abs/2412.05573v1
- Date: Sat, 07 Dec 2024 07:41:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:57:41.311931
- Title: Neighborhood Commonality-aware Evolution Network for Continuous Generalized Category Discovery
- Title(参考訳): 連続一般化カテゴリー発見のための周辺共通性を考慮した進化ネットワーク
- Authors: Ye Wang, Yaxiong Wang, Guoshuai Zhao, Xueming Qian,
- Abstract要約: 連続一般化カテゴリー発見 (Continuous Generalized Category Discovery, C-GCD) は、未実装の画像集合から新しいクラスを継続的に発見することを目的としている。
本研究では,NCENet(Neighborhood Commonality-aware Evolution Network)と呼ばれる新しい学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.90555521006653
- License:
- Abstract: Continuous Generalized Category Discovery (C-GCD) aims to continually discover novel classes from unlabelled image sets while maintaining performance on old classes. In this paper, we propose a novel learning framework, dubbed Neighborhood Commonality-aware Evolution Network (NCENet) that conquers this task from the perspective of representation learning. Concretely, to learn discriminative representations for novel classes, a Neighborhood Commonality-aware Representation Learning (NCRL) is designed, which exploits local commonalities derived neighborhoods to guide the learning of representational differences between instances of different classes. To maintain the representation ability for old classes, a Bi-level Contrastive Knowledge Distillation (BCKD) module is designed, which leverages contrastive learning to perceive the learning and learned knowledge and conducts knowledge distillation. Extensive experiments conducted on CIFAR10, CIFAR100, and Tiny-ImageNet demonstrate the superior performance of NCENet compared to the previous state-of-the-art method. Particularly, in the last incremental learning session on CIFAR100, the clustering accuracy of NCENet outperforms the second-best method by a margin of 3.09\% on old classes and by a margin of 6.32\% on new classes. Our code will be publicly available at \href{https://github.com/xjtuYW/NCENet.git}{https://github.com/xjtuYW/NCENet.git}. \end{abstract}
- Abstract(参考訳): 連続一般化カテゴリー発見 (Continuous Generalized Category Discovery, C-GCD) は、古いクラスのパフォーマンスを維持しながら、階層化されていないイメージセットから新しいクラスを継続的に発見することを目的としている。
本稿では,NCENet(Neighborhood Commonality-aware Evolution Network)と呼ばれる新しい学習フレームワークを提案する。
具体的には,NCRL(Norborhood Commonality-Aware Representation Learning)を設計し,クラス間の表現的差異の学習を支援する。
古クラスの表現能力を維持するため,二段階コントラスト知識蒸留(BCKD)モジュールを設計し,コントラスト学習を活用して知識を学習し,知識を蒸留する。
CIFAR10, CIFAR100, Tiny-ImageNetで行った大規模な実験は, 従来の最先端手法と比較して, NCENetの優れた性能を示した。
特に、CIFAR100における最後の漸進的な学習セッションにおいて、NCENetのクラスタリング精度は、古いクラスでは3.09\%、新しいクラスでは6.32\%のマージンで2番目に良いメソッドより優れている。
私たちのコードは、 \href{https://github.com/xjtuYW/NCENet.git}{https://github.com/xjtuYW/NCENet.git}で公開されます。
\end{abstract}
関連論文リスト
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
本稿では,C-GCD(Continuous Generalized Category Discovery)の未探索課題について考察する。
C-GCDは、学習済みのクラスを認識する能力を維持しながら、ラベルのないデータから新しいクラスを漸進的に発見することを目的としている。
本稿では,ハードネスを意識したプロトタイプサンプリングとソフトエントロピー正規化を特徴とする,偏りのある学習フレームワークであるHappyを紹介する。
論文 参考訳(メタデータ) (2024-10-09T04:18:51Z) - Knowledge Adaptation Network for Few-Shot Class-Incremental Learning [23.90555521006653]
クラス増分学習(class-incremental learning)は、いくつかのサンプルを使用して、新しいクラスを段階的に認識することを目的としている。
この問題を解決する効果的な方法の1つは、原型進化分類器を構築することである。
新しいクラスの表現は弱で偏りがあるので、そのような戦略は準最適であると主張する。
論文 参考訳(メタデータ) (2024-09-18T07:51:38Z) - Towards Non-Exemplar Semi-Supervised Class-Incremental Learning [33.560003528712414]
クラス増分学習は、古いクラスの識別性を保ちながら、新しいクラスを徐々に認識することを目的としている。
コントラスト学習と半教師付きインクリメンタルプロトタイプ分類器(Semi-IPC)を用いた非経験的半教師付きCILフレームワークを提案する。
Semi-IPCは教師なしの正規化で各クラスのプロトタイプを学習し、部分的にラベル付けされた新しいデータからモデルを漸進的に学習することを可能にする。
論文 参考訳(メタデータ) (2024-03-27T06:28:19Z) - Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
継続的な学習は、モデルが以前獲得した知識を忘れずに新しいタスクを学習できるようにすることを目的としている。
ワンホットラベルが伝達する少ない意味情報は,タスク間の効果的な知識伝達を妨げている,と我々は主張する。
具体的には, PLM を用いて各クラスのセマンティックターゲットを生成し, 凍結し, 監視信号として機能する。
論文 参考訳(メタデータ) (2024-03-24T12:41:58Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
分散型特徴再現(LP-DiF)を用いた学習プロンプト(Learning Prompt)という,シンプルで効果的なフレームワークを提案する。
新しいセッションでは,学習可能なプロンプトが古い知識を忘れないようにするため,擬似機能的リプレイ手法を提案する。
新しいセッションに進むと、古いクラスのディストリビューションと現在のセッションのトレーニングイメージを組み合わせて擬似フィーチャーをサンプリングして、プロンプトを最適化する。
論文 参考訳(メタデータ) (2024-01-03T07:59:17Z) - NAPA-VQ: Neighborhood Aware Prototype Augmentation with Vector
Quantization for Continual Learning [0.0]
破滅的な忘れは、新しい知識の獲得による古い知識の喪失であり、現実世界のアプリケーションでディープニューラルネットワークが直面している落とし穴である。
NECILにおけるクラスオーバーラップを低減するフレームワークであるベクトル量子化による近隣のAware Prototype Augmentationを提案する。
CIFAR-100, TinyImageNet, ImageNet-Subsetの総合的な実験により, NAPA-VQは平均5%, 2%, 4%の精度, 10%, 3%, 9%の精度でNAPA-VQよりも優れていた。
論文 参考訳(メタデータ) (2023-08-18T04:47:39Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) 設定は、既知のクラスや新しいクラスから来るラベルなしのトレーニングデータを分類することを目的としている。
本稿では,この課題に対処するために,PromptCALと呼ばれる補助視覚プロンプトを用いたコントラスト親和性学習法を提案する。
提案手法は,クラストークンと視覚的プロンプトのための既知のクラスと新しいクラスのセマンティッククラスタリングを改善するために,信頼性の高いペアワイズサンプル親和性を発見する。
論文 参考訳(メタデータ) (2022-12-11T20:06:14Z) - Open Long-Tailed Recognition in a Dynamic World [82.91025831618545]
実世界のデータは、しばしば長い尾を持ち、(目に見えないクラスを持つ)オープンな分布を示す。
現実的な認識システムは、多数派(頭)クラスと少数派(尾)クラスの間でバランスを取り、分布を一般化し、見知らぬクラス(オープンクラス)のインスタンスで新規性を認める必要がある。
我々は,Open Long-Tailed Recognition++を,このような自然分布データからの学習として定義し,バランスの取れたテストセット上での分類精度を最適化する。
論文 参考訳(メタデータ) (2022-08-17T15:22:20Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
現在の最先端のインクリメンタル学習手法は、従来の分類ネットワークにおける破滅的な忘れ方問題に取り組む。
ゼロショット変換クラス増分法(ZSTCI)と呼ばれる新しい組込みネットワークのクラス増分法を提案する。
さらに、ZSTCIを既存の正規化ベースのインクリメンタル学習手法と組み合わせることで、組み込みネットワークの性能をより向上させることができる。
論文 参考訳(メタデータ) (2020-12-31T08:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。