論文の概要: Generative Adversarial Graph Convolutional Networks for Human Action
Synthesis
- arxiv url: http://arxiv.org/abs/2110.11191v3
- Date: Mon, 25 Oct 2021 07:25:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 11:41:35.154055
- Title: Generative Adversarial Graph Convolutional Networks for Human Action
Synthesis
- Title(参考訳): ヒト行動合成のための生成逆グラフ畳み込みネットワーク
- Authors: Bruno Degardin, Jo\~ao Neves, Vasco Lopes, Jo\~ao Brito, Ehsan
Yaghoubi and Hugo Proen\c{c}a
- Abstract要約: 本研究では,人体の運動学を合成する新しいアーキテクチャであるKineetic-GANを提案する。
提案した敵対的アーキテクチャは、局所的およびグローバルな身体運動に対して最大120の異なる動作を条件付けることができる。
実験は3つのよく知られたデータセットで実施された。
- 参考スコア(独自算出の注目度): 3.0664963196464448
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Synthesising the spatial and temporal dynamics of the human body skeleton
remains a challenging task, not only in terms of the quality of the generated
shapes, but also of their diversity, particularly to synthesise realistic body
movements of a specific action (action conditioning). In this paper, we propose
Kinetic-GAN, a novel architecture that leverages the benefits of Generative
Adversarial Networks and Graph Convolutional Networks to synthesise the
kinetics of the human body. The proposed adversarial architecture can condition
up to 120 different actions over local and global body movements while
improving sample quality and diversity through latent space disentanglement and
stochastic variations. Our experiments were carried out in three well-known
datasets, where Kinetic-GAN notably surpasses the state-of-the-art methods in
terms of distribution quality metrics while having the ability to synthesise
more than one order of magnitude regarding the number of different actions. Our
code and models are publicly available at
https://github.com/DegardinBruno/Kinetic-GAN.
- Abstract(参考訳): 人体骨格の空間的および時間的ダイナミクスの合成は、生成した形状の品質だけでなく、その多様性、特に特定の作用の現実的な身体運動(アクションコンディショニング)を合成する上でも、依然として困難な課題である。
本稿では,人体の運動を合成するために,生成的敵対ネットワークとグラフ畳み込みネットワークの利点を利用する新しいアーキテクチャであるKineetic-GANを提案する。
提案する敵対的アーキテクチャは, 潜在空間のばらつきや確率的変動によるサンプル品質と多様性を改善しつつ, 局所的およびグローバルな身体運動に対して最大120の異なるアクションを条件付けることができる。
実験は,3つのよく知られたデータセットで実施され,キネティック-ganは分散品質指標において最先端の手法を特に上回り,異なるアクションの数について1桁以上の大きさの合成が可能であった。
私たちのコードとモデルはhttps://github.com/DegardinBruno/Kinetic-GAN.comで公開されています。
関連論文リスト
- Multi-Resolution Generative Modeling of Human Motion from Limited Data [3.5229503563299915]
限られたトレーニングシーケンスから人間の動きを合成することを学ぶ生成モデルを提案する。
このモデルは、骨格の畳み込み層とマルチスケールアーキテクチャを統合することで、人間の動きパターンを順応的にキャプチャする。
論文 参考訳(メタデータ) (2024-11-25T15:36:29Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANSは、現在利用可能な最も包括的なモーションキャプチャーHSIデータセットである。
人体全体の動きや部分レベルの物体の動きを複雑に捉えます。
本研究では,任意の長さのHSI配列を効率的に生成する拡散型自己回帰モデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T15:45:04Z) - GUESS:GradUally Enriching SyntheSis for Text-Driven Human Motion
Generation [23.435588151215594]
そこで本研究では,テキスト駆動型人体動作合成のためのケースケード拡散に基づく新しい生成フレームワークを提案する。
このフレームワークはGradUally Enriching SyntheSis(GUESS)という戦略を略語として利用している。
GUESSは、精度、現実性、多様性において、既存の最先端手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-01-04T08:48:21Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
本稿では,2人のインタラクションシナリオにおいて,人の全身運動を合成する拡散モデルReMoSを提案する。
ペアダンス,忍術,キックボクシング,アクロバティックといった2人のシナリオでReMoSを実証する。
また,全身動作と指の動きを含む2人のインタラクションに対してReMoCapデータセットを寄贈した。
論文 参考訳(メタデータ) (2023-11-28T18:59:52Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Discovering mesoscopic descriptions of collective movement with neural
stochastic modelling [4.7163839266526315]
小~中規模の集団運動(sim$10-1000、別名Meso)は、順序によって非自明な特徴を示す。
ここでは、相互作用する個人の神経群ダイナミクスを特徴付けるために、物理に着想を得たネットワークベースのアプローチを用いる。
本研究では,この手法を合成と実世界の両方のデータセットに適用し,ドリフトと拡散場を用いたダイナミックスの決定論的および側面を同定する。
論文 参考訳(メタデータ) (2023-03-17T11:49:17Z) - Unifying Human Motion Synthesis and Style Transfer with Denoising
Diffusion Probabilistic Models [9.789705536694665]
デジタル人間のためのリアルな動きを生成することは、コンピュータアニメーションやゲームの中核だが挑戦的な部分である。
スタイル付きモーション合成のためのデノナイズ拡散モデル解を提案する。
局所的な誘導のために人の動きの側面を戦略的に生成する拡散モデルのマルチタスクアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-12-16T15:15:34Z) - SIAN: Style-Guided Instance-Adaptive Normalization for Multi-Organ
Histopathology Image Synthesis [63.845552349914186]
本研究では,異なる臓器に対して,現実的な色分布とテクスチャを合成するためのスタイル誘導型インスタンス適応正規化(SIAN)を提案する。
4つのフェーズは一緒に動作し、生成ネットワークに統合され、イメージセマンティクス、スタイル、インスタンスレベルのバウンダリを埋め込む。
論文 参考訳(メタデータ) (2022-09-02T16:45:46Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
多様な動きを合成する無条件生成モデルであるMoDiを提案する。
我々のモデルは、多様な、構造化されていない、ラベルなしのモーションデータセットから完全に教師なしの設定で訓練されている。
データセットに構造が欠けているにもかかわらず、潜在空間は意味的にクラスタ化可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T09:06:25Z) - Towards Diverse and Natural Scene-aware 3D Human Motion Synthesis [117.15586710830489]
本研究では,ターゲットアクションシーケンスの誘導の下で,多様なシーンを意識した人間の動作を合成する問題に焦点をあてる。
この因子化スキームに基づいて、各サブモジュールが1つの側面をモデリングする責任を負う階層的なフレームワークが提案されている。
実験の結果,提案手法は,多様性と自然性の観点から,従来の手法よりも著しく優れていた。
論文 参考訳(メタデータ) (2022-05-25T18:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。