論文の概要: GGMotion: Group Graph Dynamics-Kinematics Networks for Human Motion Prediction
- arxiv url: http://arxiv.org/abs/2507.07515v1
- Date: Thu, 10 Jul 2025 08:02:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.31356
- Title: GGMotion: Group Graph Dynamics-Kinematics Networks for Human Motion Prediction
- Title(参考訳): GGMotion:人間の動き予測のためのグループグラフダイナミクス-運動学ネットワーク
- Authors: Shuaijin Wan, Huaijiang Sun,
- Abstract要約: GGMotionはグループグラフのダイナミックス・キネマティクスネットワークで、人間のトポロジをグループでモデル化し、ダイナミックスやキネマティクスの事前利用を改善する。
グループ間およびグループ間相互作用モジュールは、異なるスケールで関節の依存関係をキャプチャするために使用される。
本手法は,短期動作予測において有意な性能差を達成している。
- 参考スコア(独自算出の注目度): 9.723217255594793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion is a continuous physical process in 3D space, governed by complex dynamic and kinematic constraints. Existing methods typically represent the human pose as an abstract graph structure, neglecting the intrinsic physical dependencies between joints, which increases learning difficulty and makes the model prone to generating unrealistic motions. In this paper, we propose GGMotion, a group graph dynamics-kinematics network that models human topology in groups to better leverage dynamics and kinematics priors. To preserve the geometric equivariance in 3D space, we propose a novel radial field for the graph network that captures more comprehensive spatio-temporal dependencies by aggregating joint features through spatial and temporal edges. Inter-group and intra-group interaction modules are employed to capture the dependencies of joints at different scales. Combined with equivariant multilayer perceptrons (MLP), joint position features are updated in each group through parallelized dynamics-kinematics propagation to improve physical plausibility. Meanwhile, we introduce an auxiliary loss to supervise motion priors during training. Extensive experiments on three standard benchmarks, including Human3.6M, CMU-Mocap, and 3DPW, demonstrate the effectiveness and superiority of our approach, achieving a significant performance margin in short-term motion prediction. The code is available at https://github.com/inkcat520/GGMotion.git.
- Abstract(参考訳): 人間の運動は3次元空間における連続的な物理過程であり、複雑な力学と運動学的な制約によって支配される。
既存の方法は一般に、人間のポーズを抽象的なグラフ構造として表現し、関節間の本質的な物理的依存関係を無視し、学習の困難を増し、非現実的な動きを生じさせる。
本稿では、GGMotionを提案する。GGMotionは、グループ内の人間のトポロジをモデル化し、ダイナミクスやキネマティクスの先行をうまく活用するグループグラフダイナミクス・キネマティクスネットワークである。
3次元空間における幾何学的等角性を維持するために,空間的および時間的エッジを通じて関節特徴を集約することにより,より包括的な時空間依存性を捉えるグラフネットワークのための新しいラジアル場を提案する。
グループ間およびグループ間相互作用モジュールは、異なるスケールで関節の依存関係をキャプチャするために使用される。
等変多層パーセプトロン (MLP) と組み合わせて, 並列動力学的伝播により各群における関節位置特性を更新し, 物理的妥当性を向上する。
一方,トレーニング中の動作先を監督するために補助的損失を導入する。
また,Human3.6M,CMU-Mocap,3DPWの3つの標準ベンチマークにおいて,提案手法の有効性と優位性を示した。
コードはhttps://github.com/inkcat520/GGMotion.gitで公開されている。
関連論文リスト
- GENMO: A GENeralist Model for Human MOtion [64.16188966024542]
本稿では,1つのフレームワークで動作推定と生成を橋渡しする汎用人体運動モデル GENMO を提案する。
我々の重要な洞察は、出力運動が観測された条件信号を正確に満たさなければならないような制約された動き生成として運動推定を再構成することである。
我々の新しいアーキテクチャは、可変長動きと混合マルチモーダル条件(テキスト、オーディオ、ビデオ)を異なる時間間隔で処理し、柔軟な制御を提供する。
論文 参考訳(メタデータ) (2025-05-02T17:59:55Z) - STGFormer: Spatio-Temporal GraphFormer for 3D Human Pose Estimation in Video [7.345621536750547]
本稿では,ビデオ中の3次元ポーズ推定のためのS-Temporal GraphFormerフレームワーク(STGFormer)を提案する。
まず,人体固有のグラフ分布をより効果的に活用するためのSTGアテンション機構を導入する。
次に、時間次元と空間次元を独立に並列に処理するための変調ホップワイド正規GCNを提案する。
最後に,Human3.6MおよびMPIINF-3DHPデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-07-14T06:45:27Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
エゴガウスアン(EgoGaussian)は、3Dシーンを同時に再構築し、RGBエゴセントリックな入力のみから3Dオブジェクトの動きを動的に追跡する手法である。
動的オブジェクトと背景再構築の品質の両面で,最先端技術と比較して大きな改善が見られた。
論文 参考訳(メタデータ) (2024-06-28T10:39:36Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Multiscale Residual Learning of Graph Convolutional Sequence Chunks for
Human Motion Prediction [23.212848643552395]
時間的および空間的依存関係の学習による人間の動作予測のための新しい手法を提案する。
提案手法は,動作予測のためのシーケンス情報を効果的にモデル化し,他の手法よりも優れ,新しい最先端の手法を設定できる。
論文 参考訳(メタデータ) (2023-08-31T15:23:33Z) - Shuffled Autoregression For Motion Interpolation [53.61556200049156]
この作業は、モーションタスクのためのディープラーニングソリューションを提供することを目的としている。
本稿では,自己回帰を任意の(シャッフルされた)順序で生成するために拡張する,emphShuffled AutoRegressionと呼ばれる新しいフレームワークを提案する。
また,3つのステージを終端から終端の時空間運動変換器に組み込んだ依存グラフの構築手法を提案する。
論文 参考訳(メタデータ) (2023-06-10T07:14:59Z) - Spatial-Temporal Gating-Adjacency GCN for Human Motion Prediction [14.42671575251554]
本稿では,多様な行動型に対する複雑な時空間依存性を学習するために,時空間ゲーティング・アジャシエイトGCNを提案する。
GAGCNは短期および長期の予測において最先端の性能を達成する。
論文 参考訳(メタデータ) (2022-03-03T01:20:24Z) - Motion Prediction via Joint Dependency Modeling in Phase Space [40.54430409142653]
我々は、運動解剖学の明示的な事前知識を活用するために、新しい畳み込みニューラルモデルを導入する。
次に,個々の関節機能間の暗黙的関係を学習するグローバル最適化モジュールを提案する。
本手法は,大規模な3次元人体動作ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2022-01-07T08:30:01Z) - Learning Dynamical Human-Joint Affinity for 3D Pose Estimation in Videos [47.601288796052714]
Graph Convolution Network (GCN)は、ビデオにおける3次元人間のポーズ推定に成功している。
新しい動的グラフネットワーク(DGNet)は、ビデオから空間的・時間的関節関係を適応的に学習することにより、3次元のポーズを推定できる。
論文 参考訳(メタデータ) (2021-09-15T15:06:19Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。