Modeling the AC Power Flow Equations with Optimally Compact Neural
Networks: Application to Unit Commitment
- URL: http://arxiv.org/abs/2110.11269v1
- Date: Thu, 21 Oct 2021 16:51:43 GMT
- Title: Modeling the AC Power Flow Equations with Optimally Compact Neural
Networks: Application to Unit Commitment
- Authors: Alyssa Kody, Samuel Chevalier, Spyros Chatzivasileiadis, Daniel
Molzahn
- Abstract summary: This paper develops a technique for training an "optimally compact" NN that can represent the power flow equations with a sufficiently high degree of accuracy.
We show that the resulting NN model is more expressive than both the DC and linearized power flow approximations when embedded inside of a challenging optimization problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear power flow constraints render a variety of power system
optimization problems computationally intractable. Emerging research shows,
however, that the nonlinear AC power flow equations can be successfully modeled
using Neural Networks (NNs). These NNs can be exactly transformed into Mixed
Integer Linear Programs (MILPs) and embedded inside challenging optimization
problems, thus replacing nonlinearities that are intractable for many
applications with tractable piecewise linear approximations. Such approaches,
though, suffer from an explosion of the number of binary variables needed to
represent the NN. Accordingly, this paper develops a technique for training an
"optimally compact" NN, i.e., one that can represent the power flow equations
with a sufficiently high degree of accuracy while still maintaining a tractable
number of binary variables. We show that the resulting NN model is more
expressive than both the DC and linearized power flow approximations when
embedded inside of a challenging optimization problem (i.e., the AC unit
commitment problem).
Related papers
- Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Leveraging power grid topology in machine learning assisted optimal
power flow [0.5076419064097734]
Machine learning assisted optimal power flow (OPF) aims to reduce the computational complexity of non-linear and non- constrained power flow problems.
We assess the performance of a variety of FCNN, CNN and GNN models for two fundamental approaches to machine assisted OPF.
For several synthetic grids with interconnected utilities, we show that locality properties between feature and target variables are scarce.
arXiv Detail & Related papers (2021-10-01T10:39:53Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
It is shown that one can obtain a relatively accurate estimate of the considered parameters using the proposed method.
It provides a natural framework in inverse problems of partial differential equations with deep learning.
arXiv Detail & Related papers (2021-07-19T02:54:37Z) - CDiNN -Convex Difference Neural Networks [0.8122270502556374]
Neural networks with ReLU activation function have been shown to be universal function approximators learn function mapping as non-smooth functions.
New neural network architecture called ICNNs learn the output as a convex input.
arXiv Detail & Related papers (2021-03-31T17:31:16Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Neural Networks for Encoding Dynamic Security-Constrained Optimal Power
Flow [0.0]
This paper introduces a framework to capture previously intractable optimization constraints and transform them to a mixed-integer linear program.
We demonstrate our approach for power system operation considering N-1 security and small-signal stability, showing how it can efficiently obtain cost-optimal solutions.
arXiv Detail & Related papers (2020-03-17T21:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.