Towards modelling hazard factors in unstructured data spaces using
gradient-based latent interpolation
- URL: http://arxiv.org/abs/2110.11312v1
- Date: Thu, 21 Oct 2021 17:46:03 GMT
- Title: Towards modelling hazard factors in unstructured data spaces using
gradient-based latent interpolation
- Authors: Tobias Weber, Michael Ingrisch, Bernd Bischl, David R\"ugamer
- Abstract summary: The application of deep learning in survival analysis (SA) gives the opportunity to utilize unstructured and high-dimensional data types uncommon in traditional survival methods.
This allows to advance methods in fields such as digital health, predictive maintenance and churn analysis.
We propose 1) a multi-task variational autoencoder (VAE) with survival objective, yielding survival-oriented embeddings, and 2) a novel method HazardWalk that allows to model hazard factors in the original data space.
- Score: 2.3867305921818573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of deep learning in survival analysis (SA) gives the
opportunity to utilize unstructured and high-dimensional data types uncommon in
traditional survival methods. This allows to advance methods in fields such as
digital health, predictive maintenance and churn analysis, but often yields
less interpretable and intuitively understandable models due to the black-box
character of deep learning-based approaches. We close this gap by proposing 1)
a multi-task variational autoencoder (VAE) with survival objective, yielding
survival-oriented embeddings, and 2) a novel method HazardWalk that allows to
model hazard factors in the original data space. HazardWalk transforms the
latent distribution of our autoencoder into areas of maximized/minimized hazard
and then uses the decoder to project changes to the original domain. Our
procedure is evaluated on a simulated dataset as well as on a dataset of CT
imaging data of patients with liver metastases.
Related papers
- You are out of context! [0.0]
New data can act as forces stretching, compressing, or twisting the geometric relationships learned by a model.
We propose a novel drift detection methodology for machine learning (ML) models based on the concept of ''deformation'' in the vector space representation of data.
arXiv Detail & Related papers (2024-11-04T10:17:43Z) - Adaptive Transformer Modelling of Density Function for Nonparametric Survival Analysis [11.35395323124404]
Survival analysis holds a crucial role across diverse disciplines, such as economics, engineering and healthcare.
We propose a novel survival regression method capable of producing high-quality unimodal PDFs without any prior distribution assumption.
arXiv Detail & Related papers (2024-09-10T04:29:59Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
Conditional Variational Autoencoders (CVAEs) trained on feature vectors extracted from large pre-trained vision foundation models.
Our method notably outperforms traditional approaches in both medical and natural image domains.
Results underscore the potential of generative models to significantly impact deep learning applications in data-scarce and privacy-sensitive environments.
arXiv Detail & Related papers (2024-08-01T15:26:24Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Drug Discovery under Covariate Shift with Domain-Informed Prior
Distributions over Functions [30.305418761024143]
Real-world drug discovery tasks are often characterized by a scarcity of labeled data and a significant range of data.
We present a principled way to encode explicit prior knowledge of the data-generating process into a prior distribution.
We demonstrate that using integrate Q-SAVI to contextualize prior knowledgelike chemical space into the modeling process affords substantial accuracy and calibration.
arXiv Detail & Related papers (2023-07-14T05:01:10Z) - A Variational Bayesian Approach to Learning Latent Variables for
Acoustic Knowledge Transfer [55.20627066525205]
We propose a variational Bayesian (VB) approach to learning distributions of latent variables in deep neural network (DNN) models.
Our proposed VB approach can obtain good improvements on target devices, and consistently outperforms 13 state-of-the-art knowledge transfer algorithms.
arXiv Detail & Related papers (2021-10-16T15:54:01Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks.
Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time.
Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric.
arXiv Detail & Related papers (2020-07-26T21:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.