論文の概要: A Python Package to Detect Anti-Vaccine Users on Twitter
- arxiv url: http://arxiv.org/abs/2110.11333v1
- Date: Thu, 21 Oct 2021 17:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 17:27:24.669299
- Title: A Python Package to Detect Anti-Vaccine Users on Twitter
- Title(参考訳): twitter上の反ワクチンユーザを検出するpythonパッケージ
- Authors: Matheus Schmitz, Goran Muri\'c, Keith Burghardt
- Abstract要約: 反ワクチン主義は、最近オンラインで共有されている反ワクチン主義の物語によって推進されている。
我々は、Twitterのプロフィールを分析できるPythonパッケージを導入し、そのプロファイルがワクチンに対する感情を広める可能性を評価する。
我々はこのようなユーザーのデータを利用して、抗ワクチンスプレッシャーの道徳的特徴と感情的特徴を理解する。
- 参考スコア(独自算出の注目度): 1.1602089225841632
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Vaccine hesitancy has a long history but has been recently driven by the
anti-vaccine narratives shared online, which significantly degrades the
efficacy of vaccination strategies, such as those for COVID-19. Despite broad
agreement in the medical community about the safety and efficacy of available
vaccines, a large number of social media users continue to be inundated with
false information about vaccines and, partly because of this, became indecisive
or unwilling to be vaccinated. The goal of this study is to better understand
anti-vaccine sentiment, and work to reduce its impact, by developing a system
capable of automatically identifying the users responsible for spreading
anti-vaccine narratives. We introduce a publicly available Python package
capable of analyzing Twitter profiles to assess how likely that profile is to
spread anti-vaccine sentiment in the future. The software package is built
using text embedding methods, neural networks, and automated dataset
generation. It is trained on over one hundred thousand accounts and several
million tweets. This model will help researchers and policy-makers understand
anti-vaccine discussion and misinformation strategies, which can further help
tailor targeted campaigns seeking to inform and debunk the harmful
anti-vaccination myths currently being spread. Additionally, we leverage the
data on such users to understand what are the moral and emotional
characteristics of anti-vaccine spreaders.
- Abstract(参考訳): ワクチン中毒は長い歴史があるが、最近はオンラインでシェアされた抗ワクチンの物語によって引き起こされ、新型コロナウイルスなどの予防接種戦略の有効性は著しく低下している。
利用可能なワクチンの安全性と有効性に関する医療界の幅広い合意にもかかわらず、多くのソーシャルメディア利用者はワクチンに関する虚偽の情報に没頭し続けており、その原因の一部はワクチン接種に消極的あるいは望ましくないものになった。
本研究の目的は、抗ワクチンの感情をよりよく理解し、抗ワクチンの物語を広める責任のあるユーザーを自動的に識別できるシステムを開発することである。
私たちは、twitterのプロファイルを分析して、プロファイルが将来反ワクチン感情を広める可能性を評価することのできる、一般公開されたpythonパッケージを紹介します。
ソフトウェアパッケージは、テキスト埋め込み方法、ニューラルネットワーク、自動データセット生成を使用して構築されている。
10万以上のアカウントと数百万のツイートでトレーニングされている。
このモデルは、研究者や政策立案者が反ワクチンの議論や誤った情報戦略を理解するのに役立つ。
さらに,このような利用者のデータを利用して,抗ワクチンスプレッドラーの道徳的・感情的な特徴を理解する。
関連論文リスト
- Vax-Culture: A Dataset for Studying Vaccine Discourse on Twitter [3.768191396638854]
新型コロナウイルス感染症(COVID-19)の感染拡大に伴い、ワクチン中毒は公衆衛生当局にとって大きな課題となっている。
6373のワクチン関連ツイートからなるTwitter COVID-19データセットであるVax-Cultureを紹介します。
このことが、予防接種的信念を持つ個人にリーチするための、効果的で目標とする公衆衛生コミュニケーション戦略につながることを願っている。
論文 参考訳(メタデータ) (2023-04-13T23:04:30Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
医者は新型コロナウイルスワクチンに対して全体的に陽性であることがわかりました。
医師は新型ワクチンよりもワクチンの有効性を懸念している。
看護婦は子供に対する潜在的な副作用にもっと注意を払う。
論文 参考訳(メタデータ) (2022-09-11T14:22:16Z) - CoVaxNet: An Online-Offline Data Repository for COVID-19 Vaccine
Hesitancy Research [39.82073461647643]
人口のかなりの割合は、いまだに新型コロナウイルス(COVID-19)に対するワクチン接種を控えている。
既存のデータセットはこれらすべての側面をカバーできないため、ワクチンのヘシタシーの問題についての推論において、完全な図を作成することは困難である。
本稿では,マルチソース,マルチモーダル,マルチ機能オンラインオフラインデータリポジトリCoVaxNetを構築する。
論文 参考訳(メタデータ) (2022-06-30T05:58:35Z) - Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude
Detection in Social Media [40.61499595293957]
VADetと呼ばれるワクチンの姿勢検出のための新しい半教師付きアプローチを提案する。
VADetは、歪んだ姿勢とアスペクトトピックを学習することができ、スタンス検出とツイートクラスタリングの両方で、既存のアスペクトベースの感情分析モデルより優れています。
論文 参考訳(メタデータ) (2022-05-06T15:24:33Z) - Insta-VAX: A Multimodal Benchmark for Anti-Vaccine and Misinformation
Posts Detection on Social Media [32.252687203366605]
ソーシャルメディア上の抗ワクチンポストは、混乱を招き、ワクチンに対する大衆の信頼を低下させることが示されている。
Insta-VAXは、ヒトワクチンに関連する64,957のInstagram投稿のサンプルからなる、新しいマルチモーダルデータセットである。
論文 参考訳(メタデータ) (2021-12-15T20:34:57Z) - Winds of Change: Impact of COVID-19 on Vaccine-related Opinions of
Twitter users [19.08902619892565]
新型コロナウイルス(COVID-19)ワクチンを社会規模で投与することは、新型コロナウイルスの感染拡大を防ぐための最も適切な方法だと考えられている。
この世界的なワクチン接種は、ソーシャルメディアプラットフォーム上のワクチンに対する支持と懸念を強く表明する反Vaxxersと反Vaxxersの可能性を自然に引き起こした。
この研究の目的は、Twitterの談話データのレンズを使って、この理解を改善することである。
論文 参考訳(メタデータ) (2021-11-20T19:33:51Z) - Classifying vaccine sentiment tweets by modelling domain-specific
representation and commonsense knowledge into context-aware attentive GRU [9.8215089151757]
ワクチンのヘシタシーと拒絶はワクチン接種率の低いクラスターを生じさせ、ワクチン接種プログラムの有効性を低下させる。
ソーシャルメディアは、地理的な位置を含み、ワクチンに関する懸念を詳述することで、ワクチンの受け入れに対する新たなリスクを見積もる機会を提供する。
ワクチン関連ツイートなどのソーシャルメディア投稿を分類する手法では、一般的なドメインテキストで訓練された言語モデル(LM)を使用する。
本稿では、ワクチン関連ツイートで訓練されたドメイン固有LMを用いて相互接続されたコンポーネントで構成された新しいエンドツーエンドフレームワークについて、コンテキスト対応の双方向ゲート再帰ネットワーク(CK-BiGRU)にコモンセンス知識をモデル化する。
論文 参考訳(メタデータ) (2021-06-17T15:16:08Z) - COVID-19 Vaccines: Characterizing Misinformation Campaigns and Vaccine
Hesitancy on Twitter [8.181808709549227]
新型コロナウイルスワクチンの誤情報・共謀キャンペーンとその特徴について検討する。
本研究は,ワクチンに関する議論において,誤情報を促進するために協調的努力が用いられているかどうかを判断する。
極右抗ワクチン共謀集団を含む,大規模な抗ワクチン誤情報コミュニティと小規模な抗ワクチンコミュニティについて検討した。
論文 参考訳(メタデータ) (2021-06-15T20:32:10Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
われわれは、Twitter上での予防接種に関する議論が、予防接種ヘシタントに対する潜在的な不安にどのように影響するかを調査する。
予防接種懐疑派や擁護派が独自の「エチョ室」に居住していることが判明した。
これらのエコーチャンバーの中心には熱心な支持者がいて、高い精度のネットワークとコンテンツベースの分類器を構築しています。
論文 参考訳(メタデータ) (2020-03-26T13:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。