論文の概要: Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification
- arxiv url: http://arxiv.org/abs/2212.13898v1
- Date: Fri, 16 Dec 2022 13:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 14:16:02.509273
- Title: Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification
- Title(参考訳): 新型コロナウイルスワクチン検索分類のためのDense Feature Memory Augmented Transformer
- Authors: Jai Gupta, Yi Tay, Chaitanya Kamath, Vinh Q. Tran, Donald Metzler,
Shailesh Bavadekar, Mimi Sun, Evgeniy Gabrilovich
- Abstract要約: 本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
- 参考スコア(独自算出の注目度): 60.49594822215981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the devastating outbreak of COVID-19, vaccines are one of the crucial
lines of defense against mass infection in this global pandemic. Given the
protection they provide, vaccines are becoming mandatory in certain social and
professional settings. This paper presents a classification model for detecting
COVID-19 vaccination related search queries, a machine learning model that is
used to generate search insights for COVID-19 vaccinations. The proposed method
combines and leverages advancements from modern state-of-the-art (SOTA) natural
language understanding (NLU) techniques such as pretrained Transformers with
traditional dense features. We propose a novel approach of considering dense
features as memory tokens that the model can attend to. We show that this new
modeling approach enables a significant improvement to the Vaccine Search
Insights (VSI) task, improving a strong well-established gradient-boosting
baseline by relative +15% improvement in F1 score and +14% in precision.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)の感染拡大に伴い、ワクチンは世界的なパンデミックにおける大量感染に対する重要な防御の1つとなっている。
それらが提供する保護を考えると、特定の社会的および専門的な環境でワクチンは必須となっている。
本稿では,covid-19ワクチン接種関連検索クエリの検出のための分類モデルを提案する。
提案手法は, 最新の自然言語理解(nlu)技術と, 従来の密集した特徴を持つ事前学習トランスフォーマーを併用し, 活用するものである。
本稿では,モデルが対応できるメモリトークンとして,密集した特徴を考察する新しい手法を提案する。
この新たなモデリング手法により,Vaccine Search Insights (VSI) タスクの大幅な改善が可能となり,F1スコアの相対値が15%,精度が+14%向上した。
関連論文リスト
- Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection [6.949493332885247]
ProVaccineは、タンパク質配列と構造を潜在ベクトル表現に統合する、新しいディープラーニングソリューションである。
現在までに最も包括的な免疫原性データセットをコンパイルし、細菌、ウイルス、腫瘍から9,500以上の抗原配列、構造、および免疫原性ラベルを含む。
私たちの研究はワクチン設計に有効なツールを提供し、将来の研究に有用なベンチマークを設定します。
論文 参考訳(メタデータ) (2024-10-03T16:33:35Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
新型コロナウイルス(COVID-19)は、世界中の医療システムに悪影響を及ぼし続けている。
現段階では、新型コロナウイルスの診断と治療には、CT画像から肺感染症領域を自動的に分離することが不可欠である。
本稿では,境界案内型セマンティックラーニングネットワーク(BSNet)を提案する。
論文 参考訳(メタデータ) (2022-09-07T05:01:38Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - Modeling the effect of the vaccination campaign on the Covid-19 pandemic [0.0]
予防接種キャンペーン中にコビッドウイルスの流行を予測できる数学的モデルであるSAIVRを紹介した。
このモデルは、半教師付き機械学習手法を用いて推定されるいくつかのパラメータと初期条件を含む。
これらの結果から, 日中感染率, ワクチン有効性, および, 広範囲の社会的ワクチン依存度, デンタルレベルにおいて, パンデミックの経時的変化について広範な研究を行った。
論文 参考訳(メタデータ) (2021-08-27T19:12:13Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
アミノ酸の順序を保つことで,分類器の精度が向上することを示す。
また,アメリカ疾病予防管理センター(CDC)が報告した,変異の同定に重要な役割を担っているアミノ酸の重要性も示した。
論文 参考訳(メタデータ) (2021-08-07T15:08:15Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - Artificial Intelligence for COVID-19 Detection -- A state-of-the-art
review [5.237999056930947]
新型コロナウイルスの出現は、適切な管理のために科学界の多くの努力を必要としている。
深層学習 (DL) と人工知能 (AI) の使用は、上記すべての領域で求められる。
グローバル緊急時の課題に対処するために、DLとAIを効果的に実装できることを評価することができる。
論文 参考訳(メタデータ) (2020-11-25T07:02:14Z) - VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution
using Reinforcement Learning [6.167847933188907]
VacSIMは、Deep Reinforcement Learningモデルを、新型コロナウイルスワクチンの配布を最適化するためのContextual Banditsアプローチに置き換える、新しいパイプラインである。
インド全5州で新型コロナウイルス感染者の発生率に比例して、ワクチンを配布する素早い割当アプローチに対して、本枠組みを評価した。
論文 参考訳(メタデータ) (2020-09-14T17:37:13Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2は世界的な普及を続けており、パンデミックとなっている。
新型コロナウイルスの感染拡大を予測するために、機械学習技術を開発する必要がある。
論文 参考訳(メタデータ) (2020-07-29T10:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。