論文の概要: ESOD:Edge-based Task Scheduling for Object Detection
- arxiv url: http://arxiv.org/abs/2110.11342v1
- Date: Wed, 20 Oct 2021 13:43:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-25 13:47:59.504489
- Title: ESOD:Edge-based Task Scheduling for Object Detection
- Title(参考訳): ESOD:Edgeベースのオブジェクト検出のためのタスクスケジューリング
- Authors: Yihao Wang, Ling Gao, Jie Ren, Rui Cao, Hai Wang, Jie Zheng, Quanli
Gao
- Abstract要約: オブジェクト検出のための新しいエッジベースタスクスケジューリングフレームワーク(ESOD)を提案する。
その結果、ESODは平均22.13%と29.60%の遅延とエネルギー消費を削減できることがわかった。
- 参考スコア(独自算出の注目度): 8.347247774167109
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Object Detection on the mobile system is a challenge in terms of everything.
Nowadays, many object detection models have been designed, and most of them
concentrate on precision. However, the computation burden of those models on
mobile systems is unacceptable. Researchers have designed some lightweight
networks for mobiles by sacrificing precision. We present a novel edge-based
task scheduling framework for object detection (termed as ESOD). In detail, we
train a DNN model (termed as pre-model) to predict which object detection model
to use for the coming task and offloads to which edge servers by physical
characteristics of the image task (e.g., brightness, saturation). The results
show that ESOD can reduce latency and energy consumption by an average of
22.13% and 29.60% and improve the mAP to 45.8(with 0.9 mAP better),
respectively, compared with the SOTA DETR model.
- Abstract(参考訳): モバイルシステムにおけるオブジェクト検出は、すべてにおいて課題である。
現在、多くの物体検出モデルが設計されており、そのほとんどは精度に集中している。
しかし、モバイルシステムにおけるこれらのモデルの計算負担は許容できない。
研究者たちは、精度を犠牲にしてモバイル用の軽量ネットワークを設計した。
本稿では,オブジェクト検出のためのエッジベースのタスクスケジューリングフレームワーク(esod)を提案する。
詳細は、画像タスクの物理的特性(例えば、明るさ、飽和度)によって、来るべきタスクとどのエッジサーバにどのオブジェクト検出モデルを使うかを予測するために、DNNモデルを訓練する。
その結果、ESODは平均22.13%と29.60%の遅延とエネルギー消費を減少させ、SOTA DETRモデルと比較すると、mAPを45.8(0.9mAP改善)に改善できることがわかった。
関連論文リスト
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Efficient Apple Maturity and Damage Assessment: A Lightweight Detection
Model with GAN and Attention Mechanism [7.742643088073472]
本研究では,軽量畳み込みニューラルネットワーク(CNN)とGAN(Generative Adversarial Network)に基づく手法を提案する。
リンゴ熟度グレーディング検出では, それぞれ95.6%, 93.8%, 95.0%, 56.5の精度, リコール, 精度, FPSが得られた。
リンゴの損傷レベル検出では、提案モデルはそれぞれ95.3%、93.7%、94.5%の精度、リコール、mAPに達する。
論文 参考訳(メタデータ) (2023-10-13T18:22:30Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
LiDARポイントクラウドからの3Dオブジェクト検出の主な課題は、ネットワークの信頼性に影響を与えることなく、リアルタイムのパフォーマンスを実現することである。
本稿では,高速な動的ボキセラライザを実装することにより,ネットワークの推論速度と精度を同時に向上するソリューションを提案する。
さらに,予測対象を分類し,偽検出対象をフィルタリングする軽量検出サブヘッドモデルを提案する。
論文 参考訳(メタデータ) (2023-01-10T16:22:04Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
本稿では,ノードとエッジがオブジェクトによって表現される構造化グラフを用いた,新しい不確実性を考慮したオブジェクト検出フレームワークを提案する。
我々は我々のモデルをオブジェクトDETection(UAGDet)のための不確実性対応グラフネットワークと呼ぶ。
論文 参考訳(メタデータ) (2022-08-23T07:29:03Z) - Scaling Novel Object Detection with Weakly Supervised Detection
Transformers [21.219817483091166]
Weakly Supervised Detection Transformerを提案する。これは大規模な事前学習データセットからWSODファインタニングへの効率的な知識伝達を可能にする。
提案手法は, 大規模オブジェクト検出データセットにおいて, 従来の最先端モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-11T21:45:54Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
本稿では,KD-RNetの知識蒸留による空中画像の回転物体検出のためのモデル圧縮手法を提案する。
大規模空中物体検出データセット(DOTA)による実験結果から,提案したKD-RNetモデルにより,パラメータ数を削減した平均値精度(mAP)が向上し,同時にKD-RNetは,基底アノテーションと高い重なり合う高品質検出を提供することで,性能を向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T14:24:16Z) - Analysis and Adaptation of YOLOv4 for Object Detection in Aerial Images [0.0]
本研究は,空中画像中の物体とその位置を予測するためのYOLOv4フレームワークの適応性を示す。
トレーニングされたモデルは平均的な平均精度(mAP)が45.64%となり、推論速度はTesla K80 GPUで8.7FPSに達した。
いくつかの現代の空中物体検出器との比較研究により、YOLOv4はより優れた性能を示し、航空プラットフォームに組み込むのにより適した検出アルゴリズムが示唆された。
論文 参考訳(メタデータ) (2022-03-18T23:51:09Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - 2nd Place Solution for Waymo Open Dataset Challenge - Real-time 2D
Object Detection [26.086623067939605]
本稿では,画像から2次元物体を検出するリアルタイム手法を提案する。
我々は、加速度RTを活用して、検出パイプラインの推論時間を最適化する。
我々のフレームワークはNvidia Tesla V100 GPU上で45.8ms/frameのレイテンシを実現する。
論文 参考訳(メタデータ) (2021-06-16T11:32:03Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。