論文の概要: Knowledge Distillation for Oriented Object Detection on Aerial Images
- arxiv url: http://arxiv.org/abs/2206.09796v1
- Date: Mon, 20 Jun 2022 14:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 16:59:04.913851
- Title: Knowledge Distillation for Oriented Object Detection on Aerial Images
- Title(参考訳): 空中画像における指向性物体検出のための知識蒸留
- Authors: Yicheng Xiao, Junpeng Zhang
- Abstract要約: 本稿では,KD-RNetの知識蒸留による空中画像の回転物体検出のためのモデル圧縮手法を提案する。
大規模空中物体検出データセット(DOTA)による実験結果から,提案したKD-RNetモデルにより,パラメータ数を削減した平均値精度(mAP)が向上し,同時にKD-RNetは,基底アノテーションと高い重なり合う高品質検出を提供することで,性能を向上することを示した。
- 参考スコア(独自算出の注目度): 1.827510863075184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural network with increased number of parameters has
achieved improved precision in task of object detection on natural images,
where objects of interests are annotated with horizontal boundary boxes. On
aerial images captured from the bird-view perspective, these improvements on
model architecture and deeper convolutional layers can also boost the
performance on oriented object detection task. However, it is hard to directly
apply those state-of-the-art object detectors on the devices with limited
computation resources, which necessitates lightweight models through model
compression. In order to address this issue, we present a model compression
method for rotated object detection on aerial images by knowledge distillation,
namely KD-RNet. With a well-trained teacher oriented object detector with a
large number of parameters, the obtained object category and location
information are both transferred to a compact student network in KD-RNet by
collaborative training strategy. Transferring the category information is
achieved by knowledge distillation on predicted probability distribution, and a
soft regression loss is adopted for handling displacement in location
information transfer. The experimental result on a large-scale aerial object
detection dataset (DOTA) demonstrates that the proposed KD-RNet model can
achieve improved mean-average precision (mAP) with reduced number of
parameters, at the same time, KD-RNet boost the performance on providing high
quality detections with higher overlap with groundtruth annotations.
- Abstract(参考訳): パラメータ数が増加するディープ畳み込みニューラルネットワークは、対象物を水平境界ボックスでアノテートする自然画像のオブジェクト検出タスクにおいて、精度の向上を実現している。
バードビューの観点から捉えた空中画像では、モデルアーキテクチャとより深い畳み込み層の改善によって、オブジェクト指向オブジェクト検出タスクのパフォーマンスも向上する。
しかし、これらの最先端オブジェクト検出器を限られた計算リソースでデバイスに直接適用することは困難であり、モデル圧縮によって軽量なモデルを必要とする。
この問題に対処するために,KD-RNetという知識蒸留による空中画像の回転物体検出のためのモデル圧縮手法を提案する。
多数のパラメータを持つ教師指向のオブジェクト指向物体検出器を用いて、得られた対象カテゴリと位置情報を協調学習戦略により、KD-RNetのコンパクトな学生ネットワークに転送する。
カテゴリ情報の転送は、予測確率分布上の知識蒸留により達成され、位置情報転送における変位の処理にソフトレグレッション損失が適用される。
大規模空中物体検出データセット(DOTA)による実験結果から,提案したKD-RNetモデルにより,パラメータ数を削減した平均値精度(mAP)が向上し,同時にKD-RNetは,基底アノテーションと高い重なり合う高品質検出を提供することで,性能を向上することを示した。
関連論文リスト
- Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
空中画像における小さな物体検出は、コンピュータビジョンにおいて重要な課題である。
トランスフォーマーベースのモデルを用いた従来の手法は、特殊データベースの欠如に起因する制限に直面していることが多い。
本稿では,小型空中物体の検出とセグメンテーション機能を大幅に向上する2つの革新的なアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-02T19:47:08Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
小型物体検出のための新しいニューラルネットワークアーキテクチャであるSample-WeIghted hyPEr Network(SWIPENet)を提案する。
提案するSWIPENet+IMAフレームワークは,複数の最先端オブジェクト検出手法に対して,検出精度の向上を実現する。
論文 参考訳(メタデータ) (2020-05-23T15:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。