論文の概要: CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter
Showers with Normalizing Flows
- arxiv url: http://arxiv.org/abs/2110.11377v1
- Date: Thu, 21 Oct 2021 18:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 05:42:46.507427
- Title: CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter
Showers with Normalizing Flows
- Title(参考訳): CaloFlow II: 正規化フローによるキャロリメータショーアの高速かつ高精度な生成
- Authors: Claudius Krause and David Shih
- Abstract要約: 近年,正規化フローに基づくGEANT4カロリーシャワーエミュレーションのための高忠実度生成モデルであるCaloFlowを紹介した。
ここでは、元のフレームワークの改善であるCaloFlow v2を紹介します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, we introduced CaloFlow, a high-fidelity generative model for GEANT4
calorimeter shower emulation based on normalizing flows. Here, we present
CaloFlow v2, an improvement on our original framework that speeds up shower
generation by a further factor of 500 relative to the original. The improvement
is based on a technique called Probability Density Distillation, originally
developed for speech synthesis in the ML literature, and which we develop
further by introducing a set of powerful new loss terms. We demonstrate that
CaloFlow v2 preserves the same high fidelity of the original using qualitative
(average images, histograms of high level features) and quantitative
(classifier metric between GEANT4 and generated samples) measures. The result
is a generative model for calorimeter showers that matches the state-of-the-art
in speed (a factor of $10^4$ faster than GEANT4) and greatly surpasses the
previous state-of-the-art in fidelity.
- Abstract(参考訳): 近年,正規化フローに基づくGEANT4カロリーシャワーエミュレーションのための高忠実度生成モデルであるCaloFlowを紹介した。
そこで,本研究では,シャワー発生速度を500倍に高速化するフレームワークであるcaloflow v2について紹介する。
この改善は,ml文献における音声合成のために開発された確率密度蒸留法に基づくもので,強力な損失項の導入によりさらに発展する。
我々は,CaloFlow v2が,定性的(平均画像,高次特徴ヒストグラム)と量的(GEANT4と生成したサンプルの分類基準)を用いて,元の高忠実度を保っていることを示す。
その結果、カロリーメータのシャワー生成モデルが、最先端の速さ(GEANT4よりも10^4$速い)と一致し、従来の忠実度をはるかに上回る結果となった。
関連論文リスト
- CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation [22.42342223406944]
我々は,「Fast Calorimeter Simulation Challenge 2022 - the CaloChallenge」の結果を提示する。
本研究では,4カロリーのシャワーデータセットの次元性向上に関する最先端生成モデルについて検討した。
論文 参考訳(メタデータ) (2024-10-28T23:28:07Z) - One-Step Diffusion Distillation through Score Implicit Matching [74.91234358410281]
本稿では,Score Implicit Matching (SIM) を用いて,事前学習した拡散モデルを単一ステップジェネレータモデルに蒸留する手法を提案する。
SIMはワンステップジェネレータに対して強い経験的性能を示す。
リードトランスに基づく拡散モデルにSIMを適用することにより,テキスト・ツー・イメージ生成のための単一ステップ生成器を蒸留する。
論文 参考訳(メタデータ) (2024-10-22T08:17:20Z) - FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner [70.90505084288057]
フローベースモデルはサンプリングプロセス中により直線的なサンプリング軌道を生成する傾向にある。
擬似修正器やサンプル認識コンパイルなどいくつかの手法を導入し,推論時間をさらに短縮する。
FlowTurboはImageNet上で100(ms/img)で2.12FID、38(ms/img)で3.93FIDに達する
論文 参考訳(メタデータ) (2024-09-26T17:59:51Z) - T2V-Turbo: Breaking the Quality Bottleneck of Video Consistency Model with Mixed Reward Feedback [111.40967379458752]
本稿では,T2V-Turboについて述べる。T2V-Turboは,様々なモデルから得られるフィードバックを,事前学習したT2Vモデルの一貫性蒸留プロセスに統合する。
興味深いことに、我々のT2V-Turboの4段階の世代は、Gen-2とPikaを抜いてVBenchで最高スコアを達成した。
論文 参考訳(メタデータ) (2024-05-29T04:26:17Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular
Calorimeter Simulation [0.0]
生成する機械学習モデルは、物理解析において従来のシミュレーションチェーンをスピードアップし、拡張することが示されている。
主要な進歩として最近導入されたCaloCloudsモデルがあり、予想される国際大型検出器(ILD)の電磁熱量計のための点雲としてカロリーメータシャワーを生成する。
この記事では、多数の重要な改善が加えられたCaloClouds IIを紹介します。これには、連続的なスコアベースのモデリングが含まれています。これにより、CaloCloudsに匹敵する25ステップのサンプリングが可能になり、単一のCPU上でGeant4よりも6倍のスピードアップを実現します。
論文 参考訳(メタデータ) (2023-09-11T18:00:02Z) - Inductive Simulation of Calorimeter Showers with Normalizing Flows [0.0]
iCaloFlowは、連続したカロリー層内のエネルギー蓄積パターンに基づいて訓練された、誘導型正規化フローに基づく高速検出器シミュレーションのためのフレームワークである。
示すように、iCaloFlowは、以前考えられていたよりも10倍から100倍高い検出器測地上で高速で高忠実なシミュレーションを行う際に、フローを正規化する可能性を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T18:00:00Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - CaloFlow for CaloChallenge Dataset 1 [0.0]
CaloFlowは、正規化フローに基づく高速カロリーメータシミュレーションのための、新しくて有望なアプローチである。
Geant4より数桁高速なサンプリング時間で高忠実度サンプルを生成する方法を示す。
論文 参考訳(メタデータ) (2022-10-25T18:00:25Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
Normalizing Flows [0.0]
正規化フローに基づく高速検出器シミュレーションフレームワークであるCaloFlowを紹介する。
本研究は, フローの正規化により, 極めて高い忠実度で多チャンネルのカロリーメータシャワーを再現できることを初めて実証した。
論文 参考訳(メタデータ) (2021-06-09T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。