論文の概要: Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment
- arxiv url: http://arxiv.org/abs/2110.11420v2
- Date: Mon, 25 Oct 2021 02:31:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 12:37:08.256181
- Title: Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment
- Title(参考訳): ガーシュゴリンディスクアライメントを用いた短いビデオ要約のための高速グラフサンプリング
- Authors: Sadid Sahami, Gene Cheung, Chia-Wen Lin
- Abstract要約: 高速グラフサンプリングの最近の進歩を利用して,短い動画を複数の段落に効率よく要約する問題について検討する。
実験結果から,本アルゴリズムは最先端の手法と同等の映像要約を実現し,複雑さを大幅に低減した。
- 参考スコア(独自算出の注目度): 52.577757919003844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of efficiently summarizing a short video into several
keyframes, leveraging recent progress in fast graph sampling. Specifically, we
first construct a similarity path graph (SPG) $\mathcal{G}$, represented by
graph Laplacian matrix $\mathbf{L}$, where the similarities between adjacent
frames are encoded as positive edge weights. We show that maximizing the
smallest eigenvalue $\lambda_{\min}(\mathbf{B})$ of a coefficient matrix
$\mathbf{B} = \text{diag}(\mathbf{a}) + \mu \mathbf{L}$, where $\mathbf{a}$ is
the binary keyframe selection vector, is equivalent to minimizing a worst-case
signal reconstruction error. We prove that, after partitioning $\mathcal{G}$
into $Q$ sub-graphs $\{\mathcal{G}^q\}^Q_{q=1}$, the smallest Gershgorin circle
theorem (GCT) lower bound of $Q$ corresponding coefficient matrices -- $\min_q
\lambda^-_{\min}(\mathbf{B}^q)$ -- is a lower bound for
$\lambda_{\min}(\mathbf{B})$. This inspires a fast graph sampling algorithm to
iteratively partition $\mathcal{G}$ into $Q$ sub-graphs using $Q$ samples
(keyframes), while maximizing $\lambda^-_{\min}(\mathbf{B}^q)$ for each
sub-graph $\mathcal{G}^q$. Experimental results show that our algorithm
achieves comparable video summarization performance as state-of-the-art
methods, at a substantially reduced complexity.
- Abstract(参考訳): 本研究では,短い映像を複数のキーフレームに効率的に要約し,近年の高速グラフサンプリングの進歩を生かした。
具体的には、まず、グラフラプラシア行列 $\mathbf{L}$ で表される類似性パスグラフ (SPG) $\mathcal{G}$ を構築し、隣り合うフレーム間の類似性を正のエッジ重みとしてエンコードする。
係数行列 $\mathbf{b} = \text{diag}(\mathbf{a}) + \mu \mathbf{l}$ の最小固有値 $\lambda_{\min}(\mathbf{b})$ を最大化することは、最悪の場合の信号再構成エラーを最小化することと同値である。
我々は、$\mathcal{G}$を$Q$部分グラフ $\{\mathcal{G}^q\}^Q_{q=1}$に分割した後、最小のガーシュゴリン円定理(GCT)下界の$Q$対応係数行列 --$\min_q \lambda^-_{\min}(\mathbf{B}^q)$ -- が$\lambda_{\min}(\mathbf{B})$の下界であることを証明する。
これにより、高速グラフサンプリングアルゴリズムが反復的に$\mathcal{G}$を$Q$サンプル(キーフレーム)を使用して$Q$サブグラフに分割し、各サブグラフ$\mathcal{G}^q$に対して$\lambda^-_{\min}(\mathbf{B}^q)$を最大化する。
実験結果から,本アルゴリズムは最先端手法と同等の映像要約性能を実現し,複雑さを大幅に低減した。
関連論文リスト
- Graph Unfolding and Sampling for Transitory Video Summarization via Gershgorin Disc Alignment [48.137527345353625]
携帯電話からYouTubeやTikTokなどのソーシャルメディアサイトにアップロードされたユーザー生成ビデオ(UGV)は、短くて繰り返しではない。
我々は、ガーシュゴリンディスクアライメント(GDA)に基づく高速グラフサンプリングにより、遷移UGVを複数のディスクに線形時間で要約する。
提案アルゴリズムは,最先端の手法と比較して,映像の要約性能が向上し,複雑さが大幅に低減されていることを示す。
論文 参考訳(メタデータ) (2024-08-03T20:08:02Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - Optimal Estimator for Linear Regression with Shuffled Labels [17.99906229036223]
本稿では,シャッフルラベルを用いた線形回帰の課題について考察する。
mathbb Rntimes m の $mathbf Y、mathbb Rntimes p の mathbf Pi、mathbb Rptimes m$ の mathbf B、mathbb Rntimes m$ の $mathbf Win mathbb Rntimes m$ である。
論文 参考訳(メタデータ) (2023-10-02T16:44:47Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
強い反相関を持つデータセットに対して、適切なグラフは正および負のエッジ重みの両方を含むことを示す。
本稿では,平衡符号グラフの概念に着目した線形時間符号グラフサンプリング手法を提案する。
実験結果から, 署名付きグラフサンプリング手法は, 各種データセットにおいて, 既存の高速サンプリング方式よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-18T09:19:01Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
積 $r:=p + q$, ここで$r$は$mu$-strong convex類似性である。
エージェントの通信やローカルコールにマスターされた問題を解決する方法を提案する。
提案手法は$mathcalO(sqrtL_q/mu)$法よりもはるかにシャープである。
論文 参考訳(メタデータ) (2022-05-30T14:28:02Z) - Fast Computation of Generalized Eigenvectors for Manifold Graph
Embedding [38.902986549367434]
我々は、高速実行に既存の高速極端固有ベクトル計算アルゴリズムを利用する。
我々の埋め込みは文献の中では最速であり、多様体グラフのクラスタリング性能は最高のものとなっている。
論文 参考訳(メタデータ) (2021-12-15T03:45:39Z) - Algorithms and Hardness for Linear Algebra on Geometric Graphs [14.822517769254352]
グリーンガードとロークリンの有名な高速多重極法における次元$dの指数的依存は改善できないことを示す。
これは高速多重極法について証明された最初の公式な制限である。
論文 参考訳(メタデータ) (2020-11-04T18:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。