論文の概要: Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition
- arxiv url: http://arxiv.org/abs/2110.11479v1
- Date: Thu, 21 Oct 2021 21:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-25 15:58:20.711202
- Title: Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition
- Title(参考訳): Synt++:不完全な合成データを利用して音声認識を改善する
- Authors: Ting-Yao Hu, Mohammadreza Armandpour, Ashish Shrivastava, Jen-Hao Rick
Chang, Hema Koppula, Oncel Tuzel
- Abstract要約: 合成データによる機械学習は、合成データと実際のデータ分布のギャップのため、簡単ではない。
本稿では,分散ギャップに起因する問題を緩和するために,トレーニング中の2つの新しい手法を提案する。
これらの手法は,合成データを用いた音声認識モデルの訓練を著しく改善することを示す。
- 参考スコア(独自算出の注目度): 18.924716098922683
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With recent advances in speech synthesis, synthetic data is becoming a viable
alternative to real data for training speech recognition models. However,
machine learning with synthetic data is not trivial due to the gap between the
synthetic and the real data distributions. Synthetic datasets may contain
artifacts that do not exist in real data such as structured noise, content
errors, or unrealistic speaking styles. Moreover, the synthesis process may
introduce a bias due to uneven sampling of the data manifold. We propose two
novel techniques during training to mitigate the problems due to the
distribution gap: (i) a rejection sampling algorithm and (ii) using separate
batch normalization statistics for the real and the synthetic samples. We show
that these methods significantly improve the training of speech recognition
models using synthetic data. We evaluate the proposed approach on keyword
detection and Automatic Speech Recognition (ASR) tasks, and observe up to 18%
and 13% relative error reduction, respectively, compared to naively using the
synthetic data.
- Abstract(参考訳): 音声合成の最近の進歩により、合成データは音声認識モデルのトレーニングのための実データに代わる存在になりつつある。
しかし,合成データと実データとの差のため,合成データを用いた機械学習は簡単ではない。
合成データセットは、構造化ノイズ、コンテンツエラー、非現実的な話し方などの実際のデータに存在しないアーティファクトを含むことができる。
さらに、合成プロセスは、データ多様体の不均一サンプリングによるバイアスを生じさせる可能性がある。
分布ギャップによる問題を緩和するための訓練中の2つの新しい手法を提案する。
(i)拒絶サンプリングアルゴリズム及び
(ii)実検体と合成検体に別々にバッチ正規化統計を用いる。
本手法は合成データを用いた音声認識モデルの学習を著しく改善することを示す。
我々は,キーワード検出と自動音声認識(ASR)タスクに対する提案手法の評価を行い,合成データを用いた場合と比較して,最大18%,13%の相対誤差削減を観測した。
関連論文リスト
- Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data [69.7174072745851]
音声分類データセットを合成データで拡張する新しい手法であるSynthioを提案する。
最初の課題を克服するために、好みの最適化を用いて、T2Aモデルの世代と小規模データセットを整列する。
2つ目の課題に対処するために,大規模言語モデルの推論能力を活用する新しいキャプション生成手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T22:05:36Z) - Improving Grammatical Error Correction via Contextual Data Augmentation [49.746484518527716]
本研究では,文脈拡張に基づく合成データ構築手法を提案する。
具体的には、ルールベースの置換とモデルベースの生成を組み合わせる。
また,合成データにおけるノイズラベルの効果を軽減するために,レザベリングに基づくデータクリーニング手法を提案する。
論文 参考訳(メタデータ) (2024-06-25T10:49:56Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Are Synthetic Time-series Data Really not as Good as Real Data? [29.852306720544224]
時系列データは、データ品質の問題、バイアスと脆弱性、一般化の問題に起因する制限を提示する。
InfoBoostは、時系列表現学習機能を備えた、高度に汎用的なクロスドメインデータ合成フレームワークである。
本研究では,実データを用いて学習したモデルの性能を上回りながら,実データを必要としないモデルトレーニングを可能にする合成データに基づく手法を開発した。
論文 参考訳(メタデータ) (2024-02-01T13:59:04Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
a) Howsoエンジンを導入し、(b)ランダムプロジェクションに基づく合成データ生成フレームワークを提案する。
Howsoエンジンが生成する合成データは、プライバシーと正確性に優れており、その結果、総合的なスコアが最高の結果となる。
提案するランダム・プロジェクション・ベース・フレームワークは,高い精度で合成データを生成することができ,スケーラビリティが最速である。
論文 参考訳(メタデータ) (2023-12-09T02:04:25Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
※データ合成*はラベル付きデータの少ない小さなモデルをトレーニングするための有望な方法です。
本稿では,この分散ギャップを縮めるデータ合成フレームワークであるStep* (**S3**) による合成ステップを提案する。
提案手法は,合成データセットと実データとのギャップを小さくすることで,小型モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-10-20T17:14:25Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms [5.366354612549173]
高品質な合成データを作成するためのデータ合成手法に着目する。
本稿では,結果の合成データが実際のデータにある翻訳誤りを模倣するデータ合成手法を提案する。
実験結果から, 提案手法により生成した合成データを用いることで, 既存の合成データよりもAPEの性能が有意に向上することがわかった。
論文 参考訳(メタデータ) (2022-04-08T07:48:57Z) - Foundations of Bayesian Learning from Synthetic Data [1.6249267147413522]
我々はベイズパラダイムを用いて、合成データから学習する際のモデルパラメータの更新を特徴付ける。
ベイジアン・アップデートの最近の成果は、決定理論に基づく新しい、堅牢な合成学習のアプローチを支持している。
論文 参考訳(メタデータ) (2020-11-16T21:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。